www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitgleichmäßige Stetigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - gleichmäßige Stetigkeit
gleichmäßige Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßige Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Mo 02.04.2007
Autor: Monsterzicke

Aufgabe
Untersuche die Funktion f, g: ]0,1]--> [mm] \IR, [/mm]
f(x)= cos x/ x und f(x)= sinx/x auf gleichmäßige Stetigkeit.

Hallo! Ich bins mal wieder ;o) Das Semester hat wieder angefangen und erste Fragen tun sich auf....Es wäre schön, wenn ihr mir wie immer so schön helfen würdet!
Laut Definition ist eine Funktion ja genau dann stetig, wenn es ein [mm] \varepsilon [/mm] 0 aus allen [mm] \delta [/mm] >0 gibt, für das ein x,x0 [mm] \in [/mm] D mit                     [mm] |x-x0|<\delta [/mm]  existiert, für das gilt : |f(x)-f(x0| [mm] \ge \varepsilon0. [/mm]
Was fange ich jetzt damit an? (die Nullen sollen alle unten im Index stehen, weiß aber nicht, wie das geht)

        
Bezug
gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Mo 02.04.2007
Autor: musicandi88

Hallo!!

Sei f eine Funktion und [mm] x_0\inD(f). [/mm] Die Funktion f heißt an der Stelle [mm] x_0 [/mm] stetig genau dann, wenn folgendes gilt:

Für jede beliebige Folge [mm] (x_n) [/mm] mit [mm] x_n\inD(f) [/mm] für alle [mm] n\in\IN, x_n\not=x_0 [/mm] für alle [mm] n\in\IN [/mm] und [mm] \limes_{n\rightarrow\infty}x_n=x_0 [/mm] gilt:

Die Folge der Funktionswerte [mm] (f(x_n)) [/mm] konvergiert und [mm] \limes_{n\rightarrow\infty}f(x_n)=f(x_0) [/mm]

[mm] \limes_{x\rightarrow\(x_0}f(x) [/mm] existiert

für de Funktion g(x):

[mm] g(x_n)=\bruch{cos(x_n)}{x_n} [/mm]

Nach den Grenzwertsätzen ist die Folge der Funktionssätze konvergent und es gilt:

[mm] \limes_{n\rightarrow\infty}g(x_n)=\limes_{n\rightarrow\infty}\bruch{cos(x_n)}{x_n}=\bruch{cos(x_0)}{x_0}=g(x_0) [/mm]

Wäre die Funktion an der Stelle [mm] x_0 [/mm] nicht stetig würde ein solches Verhalten nicht auftreten.

Müsste für f(x) analog funktionieren.

...Hab das Zeug aus meinem Skript Mathe LK 12. Ich hoffe, dass das ein vollständiger Beweis war... Bin mir auch net mehr 100% sicher

Mit lieben Grüßen
Andreas


Bezug
                
Bezug
gleichmäßige Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:52 Sa 07.04.2007
Autor: Monsterzicke

Das wäre ja dann die Stetigkeit, aber nicht die gleichmaäßige Stetigkeit???!!

Bezug
                        
Bezug
gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Sa 07.04.2007
Autor: Hund

Stimmt!

Gruß
Hund

Bezug
                        
Bezug
gleichmäßige Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 Sa 07.04.2007
Autor: musicandi88

Hallo!

oh.. tut mir Leid. Ich hatte ohl etwas ungenau gelesen.

Liebe Grüße und noch viel Erfolg
Andreas

Bezug
        
Bezug
gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:53 Sa 07.04.2007
Autor: viktory_hh

Hi, ich glaube es ist zu sehen dass die erste Funktion nicht gleichmäßig stetig sein kann, denn sie hat bei Null einen Pol und da das Interval offen ist, kann man immer eine Umgebung finden in der für [mm] \eps0 [/mm] die Gleichungen nicht mehr gelten.
Die zweite Funktion ist aber wahrscheinlich gleim. stetig. Es liegt daran dass sinx in Null in etwa gleiche Steigung wie x hat, und deswegen könnte man dass über die Reihendarstellung/Polynomdarstellung von x eine Abschätzung für die maximale Differenz von sinx und x finden.
Ich bin halt kein Mathematiker, deswegen kann ich die Beweise nicht so schön formal ausführen, aber ich hoffe meine Hinweise werden Dir weiter helfen.

bis dann

Bezug
                
Bezug
gleichmäßige Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Sa 07.04.2007
Autor: Monsterzicke

Jo, danke! Ich studiere zwar Mathe, aber an der foralen Ausübung der Beweise bin ich bis jetzt auch immer gescheitert. Vielleicht kann mir jemand dabei helfen??

Bezug
                        
Bezug
gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Sa 07.04.2007
Autor: Hund

Hallo,

also für die Aufgabe gibt es eine ziemlich einfache Lösung. Zunächst hast du ja das Intervall (0,1]. Auf dem sind ja deine beiden Funktionen auch stetig. Jetzt brauchst du nur bei beiden Funktionen x gegen 0 streben zu lassen und gucken was passiert. Wenn es einen Grenzwert gibt, ist sie gleichmäßig stetig, wenn nicht dann nicht.

Ich habe hier ein einfachen Satz verwendet den ihr in der Vorlesung vielleicht schon hattet. Ansonsten begründest du so:
1. Fall: Es gibt einen Grenzwert. Dann kannst du deine Funktion in 0 steig fortsetzten und hast eine stetige Funktion auf kompaktem Intervall, was ja gleichmäßige Stetigkeit impliziert.

2. Fall: Wäre die Funktion glm. stetig, so würde das Cauchy-Kriterium die Existenz eines Grenzwertes in 0 implizieren.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]