www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionengleichung nullstelle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - gleichung nullstelle
gleichung nullstelle < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichung nullstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Fr 29.02.2008
Autor: koko

hallo

hab da ein komisches problem.

ich hab folgende funktion: [mm] f(x)=(x-3)-x*(x-3)^2 [/mm]

von dieser soll ich jetzt die nullstellen berechnen.

ich mach folgendes:

[mm] (x-3)-x*(x-3)^2=0, [/mm]  nullsetzten
[mm] (x-3)=x*(x-3)^2 [/mm]  , kürzen
$x*(x-3)-1=0$  , quadratische gleichung

[mm] \Rightarrow x_1=3.302, x_2=-0.302 [/mm] , also 2 lösungen

soweit so gut, abeeer jetzt die wichtige frage:

wenn ich im zweiten schritt nicht kürze, also [mm] (x-3)-x*(x-3)^2=0 [/mm] und ausmultipliziere komm ich ja auf [mm] x^3-6*x^2+8*x+3=0 [/mm]

[mm] \Rightarrow [/mm] mittels horner schema, erste nullstelle [mm] x_1=3, [/mm] durch polynomdivision erhalte ich [mm] x^2-3*x-1 [/mm] und hier erhalte ich wiederum die nullstellen [mm] x_2=3.302 [/mm] und [mm] x_3=-0.302, [/mm] also insgesamt eine nullstelle mehr (3)

wo liegt der fehler??? wie ist dies zu begründen???

kann mir da jemand ne antwort dazu geben.

danke im voraus

mfg koko


        
Bezug
gleichung nullstelle: durch Null geteilt!
Status: (Antwort) fertig Status 
Datum: 17:36 Fr 29.02.2008
Autor: Loddar

Hallo koko!


Du begehst den (beliebten) Fehler, dass Du einfach mal duchr null teilst.

Wenn Du durch den Term $(x-3)_$ dividierst, musst Du noch eine Sonderbetrachtung für $x-3 \ = \ 0$ machen.


Sauberer geht es aber, wenn Du wie folgt umformst und ausklammerst:

[mm] $$(x-3)-x*(x-3)^2 [/mm] \ = \ 0$$
$$(x-3)*[1-x*(x-3)] \ = \ 0$$
[mm] $$(x-3)*(-x^2+3x+1) [/mm] \ = \ 0$$
[mm] $$\gdw [/mm] \ \ \ (x-3) \ = \ 0 \ \ \ \ [mm] \text{oder} [/mm] \ \ \ \ [mm] (-x^2+3x+1) [/mm] \ = \ 0$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]