glm/pkt Konvergenz (again) < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:15 Mo 30.06.2008 | Autor: | xxxx |
Aufgabe | a) [mm] f_n [/mm] : [0,1] [mm] \to \IR [/mm] mit [mm] f_n [/mm] (x) = x( 1- [mm] x)^n [/mm] konvergiert glm gegen die Nullfunktion.
b) [mm] g_n [/mm] := n * [mm] f_n [/mm] : [0,1] [mm] \to \IR [/mm] konvergiert punktweise, aber nicht glm gegen die Nullfunktion (Tip : [mm] g_n (\bruch{1}{n} [/mm] = ...) |
Also inzwischen glaube ich, dass ich den Unterschied zwischen punkte und glm Konvergenz verstanden habe, schon allein deswegen weil mir das hier super erklärt worden ist. Danke schonmal. Aber ich wuerde doch ganz gerne nochmal ueberpruefen ob ich das jetzt alles 100% verstanden habe. Dazu hab ich einfach mal die obige Aufgabe gelöst:
zu a)
betrachte zuerst
x = 0, dann gilt fuer [mm] \limes_{n\rightarrow\infty} x(1-x)^n [/mm] = [mm] \limes_{n\rightarrow\infty} 0(1-0)^n [/mm] = 0
und fuer
0 < x [mm] \le [/mm] 1 : [mm] \limes_{n\rightarrow\infty} x(1-x)^n [/mm] = 0 weil hier gilt 0 [mm] \le [/mm] (1-x) < 1
daraus folgt, dass [mm] x(1-x)^n [/mm] punktweise gegen die Nullfunktion konvergiert.
(nur mal eine allgemeine Frage, wenn ich das zum Beispiel in dem Intervall [4,100] betrachten muesste, dann wuerde ich das doch genauso machen oder...)
Nun muss ich noch auf glm Konvergenz ueberpruefen, benutze dazu die Definition:
[mm] |f_n(x) [/mm] - f(x)| = [mm] |x(1-x)^n [/mm] - 0| [mm] \le |(1-x)^n| [/mm] < [mm] \varepsilon [/mm]
setzte nun
(1 - [mm] \varepsilon)^n [/mm] < [mm] \varepsilon
[/mm]
wenn ich das nun umforme kriege ich
n > [mm] \bruch{log \varepsilon}{log ( 1 - \varepsilon})
[/mm]
und daraus folgt die glm Konvergenz, weil ich mein n immer so wählen kann, sodass es groesser ist. Ist das so richtig...
zur b)
x = 0 dann gilt: [mm] \limes_{n\rightarrow\infty} nx(1-x)^n [/mm] = 0
0< x [mm] \le [/mm] 1 dann gilt : [mm] \limes_{n\rightarrow\infty} nx(1-x)^n [/mm] = 0
also warum das so ist, hab ich ja schon in der a gezeigt.
daraus folgt, dass [mm] g_n [/mm] punktweise gegen die Nullfunktion konvergiert.
Nun muss ich noch zeigen, dass [mm] g_n [/mm] nicht glm konvergiert. Dazu benutze ich den Tip:
[mm] g_n [/mm] ( [mm] \bruch{1}{n} [/mm] ) = n * [mm] \bruch{1}{n} [/mm] * (1 - [mm] \bruch{1}{n} )^n [/mm] = ( 1 - [mm] \bruch{1}{n} )^n
[/mm]
dann gilt
[mm] \limes_{n\rightarrow\infty} [/mm] ( 1 - [mm] \bruch{1}{n} )^n [/mm] = [mm] e^{-1}
[/mm]
und daraus folgt, dass [mm] g_n [/mm] nicht glm konvergiert. Könnte ich doch auch einfach sagen, dass die punktweise und glm konvergenz verschiedene Grenzwerte habe.
Also es wäre echt super lieb wenn hier nochmal jemand rueberschauen könnte
lg xxxx
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:14 Mo 30.06.2008 | Autor: | Merle23 |
> a) [mm]f_n[/mm] : [0,1] [mm]\to \IR[/mm] mit [mm]f_n[/mm] (x) = x( 1- [mm]x)^n[/mm] konvergiert
> glm gegen die Nullfunktion.
>
> b) [mm]g_n[/mm] := n * [mm]f_n[/mm] : [0,1] [mm]\to \IR[/mm] konvergiert punktweise,
> aber nicht glm gegen die Nullfunktion (Tip : [mm]g_n (\bruch{1}{n}[/mm]
> = ...)
> Also inzwischen glaube ich, dass ich den Unterschied
> zwischen punkte und glm Konvergenz verstanden habe, schon
> allein deswegen weil mir das hier super erklärt worden ist.
> Danke schonmal. Aber ich wuerde doch ganz gerne nochmal
> ueberpruefen ob ich das jetzt alles 100% verstanden habe.
> Dazu hab ich einfach mal die obige Aufgabe gelöst:
>
> zu a)
>
> betrachte zuerst
>
> x = 0, dann gilt fuer [mm]\limes_{n\rightarrow\infty} x(1-x)^n[/mm]
> = [mm]\limes_{n\rightarrow\infty} 0(1-0)^n[/mm] = 0
>
> und fuer
>
> 0 < x [mm]\le[/mm] 1 : [mm]\limes_{n\rightarrow\infty} x(1-x)^n[/mm] = 0
> weil hier gilt 0 [mm]\le[/mm] (1-x) < 1
>
> daraus folgt, dass [mm]x(1-x)^n[/mm] punktweise gegen die
> Nullfunktion konvergiert.
>
> (nur mal eine allgemeine Frage, wenn ich das zum Beispiel
> in dem Intervall [4,100] betrachten muesste, dann wuerde
> ich das doch genauso machen oder...)
>
> Nun muss ich noch auf glm Konvergenz ueberpruefen, benutze
> dazu die Definition:
>
> [mm]|f_n(x)[/mm] - f(x)| = [mm]|x(1-x)^n[/mm] - 0| [mm]\le |(1-x)^n|[/mm] <
> [mm]\varepsilon[/mm]
>
> setzte nun
>
> (1 - [mm]\varepsilon)^n[/mm] < [mm]\varepsilon[/mm]
> wenn ich das nun umforme kriege ich
>
> n > [mm]\bruch{log \varepsilon}{log ( 1 - \varepsilon})[/mm]
>
> und daraus folgt die glm Konvergenz, weil ich mein n immer
> so wählen kann, sodass es groesser ist. Ist das so
> richtig...
>
Nein! Du willst zeigen, dass dieser Ausdruck [mm]|(1-x)^n|[/mm] beliebig klein wird für alle [mm]x\in [0,1][/mm]. Aber das x kann beliebig nah an die Null kommen und dadurch (1-x) beliebig nah an die Eins und dadurch [mm] (1-x)^n [/mm] ebenfalls beliebig nah an die Eins. Der "Fehler", denn du gemacht hast, ist diese Abschätzung: [mm]|x(1-x)^n|\le |(1-x)^n|[/mm]. Sie ist zwar richtig, aber in diesem Fall viel zu brutal, d.h. du verlierst durch sie die Möglichkeit den Ausdruck [mm] |x(1-x)^n| [/mm] in der Nähe der Null klein zu kriegen.
>
> zur b)
>
> x = 0 dann gilt: [mm]\limes_{n\rightarrow\infty} nx(1-x)^n[/mm] = 0
> 0< x [mm]\le[/mm] 1 dann gilt : [mm]\limes_{n\rightarrow\infty} nx(1-x)^n[/mm]
> = 0
> also warum das so ist, hab ich ja schon in der a gezeigt.
>
> daraus folgt, dass [mm]g_n[/mm] punktweise gegen die Nullfunktion
> konvergiert.
> Nun muss ich noch zeigen, dass [mm]g_n[/mm] nicht glm konvergiert.
> Dazu benutze ich den Tip:
>
> [mm]g_n[/mm] ( [mm]\bruch{1}{n}[/mm] ) = n * [mm]\bruch{1}{n}[/mm] * (1 - [mm]\bruch{1}{n} )^n[/mm]
> = ( 1 - [mm]\bruch{1}{n} )^n[/mm]
>
> dann gilt
>
> [mm]\limes_{n\rightarrow\infty}[/mm] ( 1 - [mm]\bruch{1}{n} )^n[/mm] =
> [mm]e^{-1}[/mm]
> und daraus folgt, dass [mm]g_n[/mm] nicht glm konvergiert. Könnte
> ich doch auch einfach sagen, dass die punktweise und glm
> konvergenz verschiedene Grenzwerte habe.
Das geht nicht. Wenn beide "Konvergenzarten konvergieren", dann gegen dasselbe. Du hast gezeigt, dass [mm]g_n(\frac{1}{n})=(1-\frac{1}{n})^n[/mm] ist, und weil [mm]\limes_{n\rightarrow\infty}(1-\frac{1}{n})^n=e[/mm] ist, folgt [mm]\limes_{n\rightarrow\infty}\parallel g_n(x) - 0\parallel_{\infty}^{[0,1]}\ge e\not=0[/mm].
>
>
> Also es wäre echt super lieb wenn hier nochmal jemand
> rueberschauen könnte
>
> lg xxxx
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:49 Mi 02.07.2008 | Autor: | xxxx |
Also ich hab noch was neues "rausgefunden" und zwar das man die gleichmässige Konvergenz auch ueber die Supremumsnorm zeigen kann... kann man das immer machen oder geht das nur in bestimmten Fällen und wenn ja wann....
lg xxxx
|
|
|
|
|
Hi,
es gilt immer: [mm] f_n [/mm] ist gleichmäßig konvergent genau dann, wenn [mm] ||f_n [/mm] - [mm] f||_{\infty,M} \to [/mm] 0 mit n [mm] \to \infty. [/mm]
Gruß Patrick
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:29 Mi 02.07.2008 | Autor: | xxxx |
Danke schön, dass macht mir das Leben um einiges leichter
|
|
|
|