www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihen"halbe" harmonische reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - "halbe" harmonische reihe
"halbe" harmonische reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"halbe" harmonische reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 29.08.2011
Autor: Schadowmaster

moin,

Es hat sich gerade bei ein wenig rechnen folgende Frage ergeben.
Was ist:
[mm] $\lim_{n \rightarrow \infty} \sum\limits_{k = n+1}^{2n} \frac{1}{k}$ [/mm]

Für "kleine" Werte für n (bis 1.000.000) ist der Wert beinahe konstant bei 0,69.
Allerdings hab ich keine Ahnung und keine Idee, wie man das für n gegen unendlich machen soll, da ja beide Grenzen der Summe von n abhängig sind...

Ich kann bei Bedarf zeigen (bzw. argumentativ darlegen^^), dass für alle $n [mm] \in \IN$: [/mm]
$0 [mm] \leq \sum\limits_{k = n+1}^{2n} \frac{1}{k} \leq [/mm] 1$

thx schonmal

Schadowmaster

        
Bezug
"halbe" harmonische reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Mo 29.08.2011
Autor: hippias

Es gilt [mm] $\limes_{n\rightarrow\infty} \sum\limits_{k = 1}^{n} \frac{1}{k} [/mm] -ln(n)= [mm] \gamma$, [/mm] wobei [mm] $\gamma$ [/mm] die Euler'sche Konstante bezeichne. Damit folgt [mm] $\lim_{n \rightarrow \infty} \sum\limits_{k = n+1}^{2n} \frac{1}{k}= \lim_{n \rightarrow \infty} \sum\limits_{k = 1}^{2n} \frac{1}{k}- \sum\limits_{k = 1}^{n} \frac{1}{k}= \lim_{n \rightarrow \infty} \sum\limits_{k = 1}^{2n} \frac{1}{k}-ln(n)- (\sum\limits_{k = 1}^{n} \frac{1}{k}- [/mm] ln(2n))+ ln(2)= [mm] \gamma-\gamma+ [/mm] ln(2)= ln(2)$. Passt ja auch gut zu den 0,69.
  


Bezug
                
Bezug
"halbe" harmonische reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 Mo 29.08.2011
Autor: Schadowmaster

hmm, doch, sieht hübsch aus.

thx


Bezug
                
Bezug
"halbe" harmonische reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Mo 29.08.2011
Autor: Al-Chwarizmi


> Es gilt [mm]\limes_{n\rightarrow\infty} \sum\limits_{k = 1}^{n} \frac{1}{k} -ln(n)= \gamma[/mm],
> wobei [mm]\gamma[/mm] die Euler'sche Konstante bezeichne. Damit
> folgt [mm]\lim_{n \rightarrow \infty} \sum\limits_{k = n+1}^{2n} \frac{1}{k}= \lim_{n \rightarrow \infty} \sum\limits_{k = 1}^{2n} \frac{1}{k}- \sum\limits_{k = 1}^{n} \frac{1}{k}= \lim_{n \rightarrow \infty} \sum\limits_{k = 1}^{2n} \frac{1}{k}-ln(n)- (\sum\limits_{k = 1}^{n} \frac{1}{k}- ln(2n))+ ln(2)= \gamma-\gamma+ ln(2)= ln(2)[/mm].
> Passt ja auch gut zu den 0,69.


Hallo,

für die Herleitung des Ergebnisses braucht man aber die
Konstante (Euler-Mascheroni) keineswegs, weder numerisch
noch überhaupt !

LG   Al-Chw.

Bezug
                        
Bezug
"halbe" harmonische reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Mo 29.08.2011
Autor: hippias

Aber ich habe wenigstens die Konvergenz von [mm] $\limes_{n\rightarrow\infty} \sum\limits_{k = 1}^{n} \frac{1}{k} [/mm] -ln(n)$ benoetigt. Da ich keine Idee hatte diese zu beweisen, gab ich das Stichwort, um "weiterfuehrende Studien" zu erleichtern. Es gibt aber bestimmt eine elementarere Herleitung des Grenzwertes.


Bezug
        
Bezug
"halbe" harmonische reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Mo 29.08.2011
Autor: Leopold_Gast

Um die Kritik von Al-Chwarizmi aufzugreifen:

Man kann die Summe als Untersumme des Integrals [mm]\int_1^2 \frac{\mathrm{d}x}{x}[/mm] auffassen, wenn man das Intervall [mm][1,2][/mm] in [mm]n[/mm] gleiche Teile teilt. Das war's auch schon.

Bezug
                
Bezug
"halbe" harmonische reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:55 Mo 29.08.2011
Autor: ullim

Hi,

kann es sein, dass Du Obersummen meinst?

Bezug
                        
Bezug
"halbe" harmonische reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:04 Di 30.08.2011
Autor: Al-Chwarizmi


> Hi,
>  
> kann es sein, dass Du Obersummen meinst?

Leopold meint wohl schon Untersummen.
Die Funktion $\ [mm] f:x\to\frac{1}{x}$ [/mm] ist über [1...2] fallend.

Beispiel:  [mm] $\summe_{k=3+1}^{2*3}\frac{1}{k*\frac{1}{3}}*\frac{1}{3}\ [/mm] =\ [mm] \summe_{k=3+1}^{2*3}\frac{1}{k}\ [/mm] =\ [mm] \frac{37}{60}\ [/mm] =\ [mm] 0.61\overline{6}\ [/mm] <\ ln(2)\ =\ [mm] \integral_{1}^{2}\frac{1}{x}\,dx$ [/mm]

LG   Al-Chw.


Bezug
                
Bezug
"halbe" harmonische reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:46 Di 30.08.2011
Autor: Al-Chwarizmi


> Um die Kritik von Al-Chwarizmi aufzugreifen:

(war gar nicht als "Kritik" gemeint - nur als Anmerkung)
  

> Man kann die Summe als Untersumme des Integrals [mm]\int_1^2 \frac{\mathrm{d}x}{x}[/mm]
> auffassen, wenn man das Intervall [mm][1,2][/mm] in [mm]n[/mm] gleiche Teile
> teilt. Das war's auch schon.

Genau so habe ich mir das auch gedacht.

LG   Al


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]