www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTechnikhebelgesetz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Technik" - hebelgesetz
hebelgesetz < Technik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Technik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hebelgesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Do 24.10.2013
Autor: arbeitsamt

Aufgabe
ich lade eine abbildung als bild hoch und möchte wiessen wie ich zu dieser formel komme:

a1= [mm] \bruch{F2*h}{F1+F2} [/mm]

aus der abbildung kann man ablesen

R=F1+F2

h= a1+a2

[mm] \bruch{a1}{l} [/mm] = [mm] \bruch{K}{F1} [/mm]

[mm] \bruch{a2}{l} [/mm] = [mm] \bruch{K}{F2} [/mm]

und das hebelgesetz: a1*F1= a2*F2

so wie komme ich jetzt zu:

a1= [mm] \bruch{F2*h}{F1+F2} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
hebelgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Do 24.10.2013
Autor: chrisno

Forme [mm] $a_1 [/mm] = [mm] \bruch{F_2 h}{F_1 + F_2} [/mm] wie folgt um:
Multipliziere mit [mm] $F_1 [/mm] + [mm] F_2$ [/mm]
Ersetze h durch [mm] $a_1 [/mm] + [mm] a_2$ [/mm]
Multipliziere alles aus,
subtrahiere [mm] $a_1 F_2$ [/mm]
und dann steht da das Hebelgesetz.



Bezug
                
Bezug
hebelgesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Do 24.10.2013
Autor: arbeitsamt

danke für die antwort, aber ich weiß immer noch nicht wie ich vom hebelgesetz nach

a1= [mm] \bruch{F2*h}{F1+F2} [/mm]

komme

also genau umgekehrt wie du das gesagt, aber ich blick da nicht irgendwie nicht durch

Bezug
                        
Bezug
hebelgesetz: wenige Schritte
Status: (Antwort) fertig Status 
Datum: 21:43 Do 24.10.2013
Autor: Loddar

Hallo!


Ersetze in der Gleichung des Hebelgesetzes [mm]a_2 \ = \ h-a_1[/mm] und forme anschließend nach [mm]a_1 \ = \ ...[/mm] um.


Gruß
Loddar

Bezug
                                
Bezug
hebelgesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Do 24.10.2013
Autor: arbeitsamt

die idee hatte ich auch, aber das klappt irgendwie nicht:

a1*F1= a2*F2

a1*F1= (h-a1) * F2

a1*F1= (h*F2)-(a1*F2)

wie mache ich jetzt weiter?

Bezug
                                        
Bezug
hebelgesetz: fast fertig
Status: (Antwort) fertig Status 
Datum: 21:58 Do 24.10.2013
Autor: Loddar

Hallo!


> a1*F1= a2*F2
> a1*F1= (h-a1) * F2
> a1*F1= (h*F2)-(a1*F2)

Nun auf beiden Seiten $+ \ [mm] a_1*F_2$ [/mm] addieren.
Anschließend [mm] $a_1$ [/mm] ausklammern und durch diese entstehende Klammer teilen.


Gruß
Loddar

Bezug
                                                
Bezug
hebelgesetz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Do 24.10.2013
Autor: arbeitsamt

ich werde mir das morgen abend nochmal angucken.



Bezug
                        
Bezug
hebelgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Do 24.10.2013
Autor: chrisno

Du fängst mit dem Hebelgesetz an und machst dann genau die entgegengesetzten Umformungen.
Also: zum Hebelgesetz auf beiden Seiten [mm] $a_1 F_2$ [/mm] addieren, ....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Technik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]