www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrahermitesche Form
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - hermitesche Form
hermitesche Form < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hermitesche Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 So 12.09.2004
Autor: regine

Hallo,

man sagt ja, eine symmetrische Bilinearform s ist positiv definit, wenn s(v,v)>0 für alle v [mm] \in [/mm] V, v [mm] \not= [/mm] 0.

Wie ist denn das bei der hermiteschen Form?

Viele Grüße,
Regine.

        
Bezug
hermitesche Form: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 So 12.09.2004
Autor: Paulus

Hallo Regine


> man sagt ja, eine symmetrische Bilinearform s ist positiv
> definit, wenn s(v,v)>0 für alle v [mm]\in[/mm] V, v [mm]\not=[/mm] 0.
>
> Wie ist denn das bei der hermiteschen Form?

Ja! Man kann ja zeigen, dass für eine Hermitesche Form [mm] $\beta$ [/mm] gilt:  [mm] $\beta({\vec{x}},{\vec{x}}) \in \mathbb{R}$. [/mm] Darum kann auch hier die Definition von "positiv definit" übernommen werden.

Dann gilt auch: unter einem Skalaren Produkt in einem Komplexen Vektorraum versteht man eine positiv definite Hermitesche Form.

Ich hoffe, zusammen mit der Antwort zu deiner Frage über die Ueberprüfung auf Skalarprodukt sei jetz alles klar.

Falls nicht, meldest du dich einfach wieder! :-)

Mit lieben Grüssen

Paul

Bezug
                
Bezug
hermitesche Form: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 So 12.09.2004
Autor: regine

Hallo,

herzlichen Dank erstmal!

Ich fasse mal zusammen:

Skalarprodukt in [mm] \IR [/mm] = positiv definite symmetrische Bilinearform
Skalarprodukt in [mm] \IC [/mm] = positiv definite hermitesche Sesquilinearform

Und je nach dem, was gegeben ist, klapper ich die Kriterien in logischer Reihenfolge (also meine Liste oben sozusagen rückwärts) ab.

Sprich: Ist es eine Bilinearform? Ist sie zudem symmetrisch? Und dann auch noch positiv definit? Dann ist durch das vorhin gegebene Integral ein Skalarprodukt gegeben.

Vielen Dank und liebe Grüße,
Regine.

Bezug
                        
Bezug
hermitesche Form: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:44 So 12.09.2004
Autor: Paulus

Hallo Regine

Ja, geau so, wie du es zusammengefasst hast, ists korrekt.
(wenngleich du die Angaben für "reellen vektorraum" und "Komplexen Vektorraum" nicht sorgfältig gemacht hast, es sollte heissen; Vektorraum über [mm] $\mathbb{R}$ [/mm] etc.).

Und dein Integral ist tatsächlich ein Skalarprodukt! (Unter den von mir angenommenen Voraussetzungen)

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]