www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenhermitesche, orthogonale Matri
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - hermitesche, orthogonale Matri
hermitesche, orthogonale Matri < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hermitesche, orthogonale Matri: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:33 Mo 13.07.2009
Autor: Unk

Aufgabe
Beweisen Sie oder widerlegen Sie:
(i) Ist A hermitesche quadratische Matrix, so ist |Av|=|v|
(ii) Ist A quadratische, orthogonale Matrix mit Av=0, so folgt v=0

Und zeigen Sie:
Sei [mm] A\in \mathcal{O}(n). [/mm] Ist 1 kein Eigenwert von A, so ist detA=-1.

Hallo,

bei (i) habe ich bisher verzweifelt versucht ein Gegenbeispiel zu finden. So langsam fange ich an die Aussage zu glauben, es ist mir jedoch noch nicht gelungen sie zu beweisen.

Für (ii) habe ich folgendes gemacht, was mir doch sehr komisch erscheint:
Wenn A orthogonal ist, dann ist A invertierbar,
gilt Also [mm] Av=0\Rightarrow A^{t}Av=E_{n}v=v=0. [/mm]

Zum letzten:
Ich weiß, dass alle Eigenwerte den Betrag 1 haben, weiter bin ich noch nicht.

        
Bezug
hermitesche, orthogonale Matri: Antwort
Status: (Antwort) fertig Status 
Datum: 02:39 Mo 13.07.2009
Autor: felixf

Hallo!

> Beweisen Sie oder widerlegen Sie:
>  (i) Ist A hermitesche quadratische Matrix, so ist
> |Av|=|v|
>  (ii) Ist A quadratische, orthogonale Matrix mit Av=0, so
> folgt v=0
>  
> Und zeigen Sie:
>  Sei [mm]A\in \mathcal{O}(n).[/mm] Ist 1 kein Eigenwert von A, so
> ist detA=-1.
>  Hallo,
>  
> bei (i) habe ich bisher verzweifelt versucht ein
> Gegenbeispiel zu finden. So langsam fange ich an die
> Aussage zu glauben, es ist mir jedoch noch nicht gelungen
> sie zu beweisen.

Sie stimmt aber nicht.

Es gibt da eine sehr einfache Matrix (nicht die Einheitsmatrix!), welche auch hermitesch ist.

> Für (ii) habe ich folgendes gemacht, was mir doch sehr
> komisch erscheint:
>  Wenn A orthogonal ist, dann ist A invertierbar,
>  gilt Also [mm]Av=0\Rightarrow A^{t}Av=E_{n}v=v=0.[/mm]

Genau.

> Zum letzten:
>  Ich weiß, dass alle Eigenwerte den Betrag 1 haben, weiter
> bin ich noch nicht.

Die Aussage stimmt auch nicht. Fuer $n = 2$ betrachte etwa [mm] $\pmat{ -1 & 0 \\ 0 & -1 }$. [/mm]

LG Felix


Bezug
                
Bezug
hermitesche, orthogonale Matri: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:42 Mo 13.07.2009
Autor: felixf

Hallo!

> > Und zeigen Sie:
>  >  Sei [mm]A\in \mathcal{O}(n).[/mm] Ist 1 kein Eigenwert von A, so
> > ist detA=-1.
>
> Die Aussage stimmt auch nicht. Fuer [mm]n = 2[/mm] betrachte etwa
> [mm]\pmat{ -1 & 0 \\ 0 & -1 }[/mm].

Zusatz: die Aussage stimmt genau dann, wenn $n = 1$ ist. Und da gibt es nur genau zwei orthogonale Matrizen: [mm] $\mat{1}$ [/mm] und [mm] $\pmat{-1}$, [/mm] welche mit Determinante und Eigenwert uebereinstimmen.

Fuer alle anderen Dimensionen kann man sich mit den Diagonalbloecken [mm] $\pmat{-1}$, $\pmat{ 0 & 1 \\ 1 & 0 }$ [/mm] und [mm] $\pmat{ 0 & 1 \\ -1 & 0 }$ [/mm] jeweils orthogonale Matrizen basteln, die 1 nicht als Eigenwert hat, deren Determinante jedoch 1 ist.

LG Felix


Bezug
                
Bezug
hermitesche, orthogonale Matri: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mo 13.07.2009
Autor: Unk


> Hallo!
>  
> > Beweisen Sie oder widerlegen Sie:
>  >  (i) Ist A hermitesche quadratische Matrix, so ist
> > |Av|=|v|
>  >  (ii) Ist A quadratische, orthogonale Matrix mit Av=0,
> so
> > folgt v=0
>  >  
> > Und zeigen Sie:
>  >  Sei [mm]A\in \mathcal{O}(n).[/mm] Ist 1 kein Eigenwert von A, so
> > ist detA=-1.
>  >  Hallo,
>  >  
> > bei (i) habe ich bisher verzweifelt versucht ein
> > Gegenbeispiel zu finden. So langsam fange ich an die
> > Aussage zu glauben, es ist mir jedoch noch nicht gelungen
> > sie zu beweisen.
>  
> Sie stimmt aber nicht.

[mm] A=\begin{pmatrix}0 & i\\ -i & 0\end{pmatrix}. [/mm] Dann folgt das nicht. Mich haben nur die Beträge da irritiert.

>  
> Es gibt da eine sehr einfache Matrix (nicht die
> Einheitsmatrix!), welche auch hermitesch ist.
>  
> > Für (ii) habe ich folgendes gemacht, was mir doch sehr
> > komisch erscheint:
>  >  Wenn A orthogonal ist, dann ist A invertierbar,
>  >  gilt Also [mm]Av=0\Rightarrow A^{t}Av=E_{n}v=v=0.[/mm]
>  
> Genau.
>  
> > Zum letzten:
>  >  Ich weiß, dass alle Eigenwerte den Betrag 1 haben,
> weiter
> > bin ich noch nicht.
>
> Die Aussage stimmt auch nicht. Fuer [mm]n = 2[/mm] betrachte etwa
> [mm]\pmat{ -1 & 0 \\ 0 & -1 }[/mm].

Hmm, das ist komisch, weil in der Aufgabe ausdrücklich steht: Zeigen Sie, dass die Aussage gilt. Dann muss die Aufgabe falsch gestellt sein.

>  
> LG Felix
>  


Bezug
                        
Bezug
hermitesche, orthogonale Matri: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Mo 13.07.2009
Autor: felixf

Hallo!

> > > bei (i) habe ich bisher verzweifelt versucht ein
> > > Gegenbeispiel zu finden. So langsam fange ich an die
> > > Aussage zu glauben, es ist mir jedoch noch nicht gelungen
> > > sie zu beweisen.
>  >  
> > Sie stimmt aber nicht.
>  
> [mm]A=\begin{pmatrix}0 & i\\ -i & 0\end{pmatrix}.[/mm] Dann folgt
> das nicht. Mich haben nur die Beträge da irritiert.

Oder einfach die Nullmatrix ;-)

> > Die Aussage stimmt auch nicht. Fuer [mm]n = 2[/mm] betrachte etwa
> > [mm]\pmat{ -1 & 0 \\ 0 & -1 }[/mm].
>  
> Hmm, das ist komisch, weil in der Aufgabe ausdrücklich
> steht: Zeigen Sie, dass die Aussage gilt. Dann muss die
> Aufgabe falsch gestellt sein.

Ja, vermutlich. Sowas kommt vor.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]