www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenhöhere Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - höhere Ableitung
höhere Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

höhere Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Fr 03.08.2012
Autor: barsch



Hallo!

Ich sitze gerade vor einem Artikel, in dem höhere Ableitungen vorkommen.

Sei eine Funktion g gegeben: [mm]g:\IR^3\to\IR[/mm] mit [mm](x,y,z)\mapsto{(-x+y+z)*(x^4+y^4+z^4)}[/mm]

Nun steht dort weiter: Für (x,y,z)=(0,0,0) gilt

"The higher derivative operators (tensors)"

g'((0,0,0))=0 (okay, das ist der Gradient von g)

g''((0,0,0))=0 (okay, das ist die Hessematrix von g)

g'''((0,0,0))=0.

Wie sieht denn die dritte Ableitung aus? Was soll das denn sein? Oben wird der Begriff Tensor genannt, leider wird aber im ganzen Artikel nicht einmal erklärt, wie die höheren Ableitungen gebildet werden.

Wenn mir das jemand erklären könnte oder einen Link wüsste, wäre super.

Vielen Dank.

Gruß
barsch


        
Bezug
höhere Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:17 Fr 03.08.2012
Autor: franzzink

Hallo,

ich VERMUTE die 3. Ableitung ist einfach die Jacobi-Matrix der Hesse-Matrix:

Sei H die Hesse-Matrix zu g:

H = [mm] \pmat{ h_{11} & h_{12} & h_{13}\\ h_{21} & h_{22} & h_{23}\\ h_{31} & h_{32} & h_{33}} [/mm]

Dann wäre die 3. Ableitung:

J(H)=  [mm] \pmat{\bruch{\partial h_{11}}{\partial x} & \bruch{\partial h_{11}}{\partial y} & \bruch{\partial h_{11}}{\partial z} \\ \bruch{\partial h_{21}}{\partial x} & \bruch{\partial h_{21}}{\partial y} & \bruch{\partial h_{21}}{\partial z}\\ \bruch{\partial h_{31}}{\partial x} & \bruch{\partial h_{31}}{\partial y} & \bruch{\partial h_{31}}{\partial z}\\ \bruch{\partial h_{12}}{\partial x} & \bruch{\partial h_{12}}{\partial y} & \bruch{\partial h_{12}}{\partial z}\\ \bruch{\partial h_{22}}{\partial x} & \bruch{\partial h_{22}}{\partial y} & \bruch{\partial h_{22}}{\partial z}\\ \bruch{\partial h_{32}}{\partial x} & \bruch{\partial h_{32}}{\partial y} & \bruch{\partial h_{32}}{\partial z}\\ \bruch{\partial h_{13}}{\partial x} & \bruch{\partial h_{13}}{\partial y} & \bruch{\partial h_{13}}{\partial z}\\ \bruch{\partial h_{23}}{\partial x} & \bruch{\partial h_{23}}{\partial y} & \bruch{\partial h_{23}}{\partial z}\\ \bruch{\partial h_{33}}{\partial x} & \bruch{\partial h_{33}}{\partial y} & \bruch{\partial h_{33}}{\partial z}\\ } [/mm]

Vielleicht kann dies ja jemand bestätigen, der es sicher weiß...

Schöne Grüße
franzzink

Bezug
                
Bezug
höhere Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:51 Fr 03.08.2012
Autor: barsch

Hallo franzzink,

danke, dass du deine Vermutung gepostet hast. Ich habe auch schon mal im Internet gesucht, gefunden habe ich aber nichts.
Aber vielleicht untermauert noch jemand deine These.

Vielen Dank.

Grüße
barsch


Bezug
        
Bezug
höhere Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Fr 03.08.2012
Autor: Event_Horizon

Hallo!

Das ist schon ganz richtig so. Jede Komponente wird für sich nach x, y, z abgeleitet. Die erste Ableitung eines Skalarfeldes hat daher 3 Elemente ("Vektor"),für die zweite wird jede Komponente der 1. Ableitung nochmals nach x, y, z abgeleitet ("Matrix", 3x3=9 Elemente), und die dritte Ableitung hat demnach 3x3x3=27 Elemente.


Bezug
                
Bezug
höhere Ableitung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:46 Fr 03.08.2012
Autor: barsch

Hallo,

> Hallo!
>
> Das ist schon ganz richtig so. Jede Komponente wird für
> sich nach x, y, z abgeleitet. Die erste Ableitung eines
> Skalarfeldes hat daher 3 Elemente ("Vektor"),für die
> zweite wird jede Komponente der 1. Ableitung nochmals nach
> x, y, z abgeleitet ("Matrix", 3x3=9 Elemente), und die
> dritte Ableitung hat demnach 3x3x3=27 Elemente.


vielen Dank. Mir war die Darstellung unklar. Da eben auch der Begriff des Tensors fiel. Nun bin ich schlauer, danke [grins]

Grüße
barsch

Bezug
                        
Bezug
höhere Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Fr 03.08.2012
Autor: Marcel

Hallo,

> Hallo,
>  
> > Hallo!
>  >

> > Das ist schon ganz richtig so. Jede Komponente wird für
> > sich nach x, y, z abgeleitet. Die erste Ableitung eines
> > Skalarfeldes hat daher 3 Elemente ("Vektor"),für die
> > zweite wird jede Komponente der 1. Ableitung nochmals nach
> > x, y, z abgeleitet ("Matrix", 3x3=9 Elemente), und die
> > dritte Ableitung hat demnach 3x3x3=27 Elemente.
>  
>
> vielen Dank. Mir war die Darstellung unklar. Da eben auch
> der Begriff des Tensors fiel. Nun bin ich schlauer, danke
> [grins]

Tensoren sind schon spezielle (mathematische) Objekte, die auch gewisse Eigenschaften haben. Ich lese mich gerade in die Tensoranalysis ein (was auf mich bisher im Wesentlichen nur wie lineare Algebra in einer anderen Notation wirkt).

Wenn Du mal was suchst: Das Buch von Schade und Neeman, Tensoranalysis, ist schon ganz gut, finde ich jedenfalls.

Aber nur, falls Du Dich mal mit Tensoranalysis beschäftigen willst - oder mit Tensoralgebra. Das sind schon, wie ich finde, spannende Gebiete, aber das schlimmste ist meiner Meinung nach, sich erstmal an die Notationen zu gewöhnen. Und das ich in Differentialgeometrie nun auch kein so starken Vorkenntnisse habe, erschwert mir das Lesen (anderer) Bücher bzgl. der oben stehenden Gebiete auch ein wenig ^^

Gruß,
  Marcel

Bezug
                                
Bezug
höhere Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 Fr 03.08.2012
Autor: MontBlanc

Hallo,

was Tensoranalysis angeht habe ich eine Menge durch anwendugsbezogene Textbücher gelernt - wenn die englische Sprache kein Problem darstellt, dann kann ich folgende Bücher empfehlen:

Mathematical Methods in Physical Science - Mary L. Boas (relativ kurz aber mit viel Übungsmaterial)

Vector Analysis - Schaum's Outline Series (hat eine schöne Einführung in Tensor-schreibweise)

General Relativity - N.M.J. Woodhouse (hier habe ich am meisten gelernt und auch sehen können warum man es eigentlich gut gebrauchen kann).

Soll es um angewandte Differentialgeometrie gehen, habe ich nur zwei ziemliche Schinken als Empfehlung, die auch alles andere als leichte Kost sind

The Geometry of Physics:An Introduction - T. Frankel (Es wird so gut wie alles Wichtige abgedeckt, schönes Buch über angewandte Differentialgeometrie)


Introduction to Dynamics and Symmetry - J. E. Marsden & T. Ratiu

Das ist alles etwas off-topic, ich entschuldige mich dafür.

LG

Bezug
                                        
Bezug
höhere Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Sa 04.08.2012
Autor: barsch

Hallo,


> Hallo,
>  
> was Tensoranalysis angeht habe ich eine Menge durch
> anwendugsbezogene Textbücher gelernt - wenn die englische
> Sprache kein Problem darstellt, dann kann ich folgende
> Bücher empfehlen:

anwendungsbezogen ist nie verkehrt.

>  
> Mathematical Methods in Physical Science - Mary L. Boas
> (relativ kurz aber mit viel Übungsmaterial)
>  
> Vector Analysis - Schaum's Outline Series (hat eine schöne
> Einführung in Tensor-schreibweise)
>  
> General Relativity - N.M.J. Woodhouse (hier habe ich am
> meisten gelernt und auch sehen können warum man es
> eigentlich gut gebrauchen kann).
>  
> Soll es um angewandte Differentialgeometrie gehen, habe ich
> nur zwei ziemliche Schinken als Empfehlung, die auch alles
> andere als leichte Kost sind
>  
> The Geometry of Physics:An Introduction - T. Frankel (Es
> wird so gut wie alles Wichtige abgedeckt, schönes Buch
> über angewandte Differentialgeometrie)
>  
>
> Introduction to Dynamics and Symmetry - J. E. Marsden & T.
> Ratiu
>  
> Das ist alles etwas off-topic, ich entschuldige mich
> dafür.

Ne, das passt schon ;-) - Danke für die Buchtipps.

>  
> LG

Gruß
barsch


Bezug
                                
Bezug
höhere Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:28 Sa 04.08.2012
Autor: barsch

Hallo,

danke für den Buchtipp. Je nachdem, wie tief in dem Artikel, den ich gerade bearbeite, noch auf Tensoren eingegangen wird, werde ich evtl. darauf zurückgreifen.

Vielen Dank.

Gruß
barsch


Bezug
                                        
Bezug
höhere Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Sa 04.08.2012
Autor: Marcel

Hallo,

> Hallo,
>  
> danke für den Buchtipp. Je nachdem, wie tief in dem
> Artikel, den ich gerade bearbeite, noch auf Tensoren
> eingegangen wird, werde ich evtl. darauf zurückgreifen.

vor allem musst Du aber - wie das halt bei fast jedem Lehrbuch ist - auch gucken, ob Du mit dem Schreibstil zurechtkommst und ob Du dort auch die Sachen findest, die für Dich interessant sind. Ich empfinde das Buch bisher mehr so als "Einstieg in die Tensoranalysis". Aber das liegt auch an zwei Dingen, die miteinander gekoppelt sind:
Mir fehlt oft die Zeit, mich tiefer damit zu befassen - und entsprechend ist der zweite Punkt halt, dass ich das Buch bisher noch nicht wirklich weit durchgearbeitet habe.

Die ganzen Buchtipps von Montblanc sind sicher auch super, denn soweit ich das mitbekommen habe scheint sich Montblanc schon ofter und mir mit dieser Materie befasst zu haben ;-)

Gruß,
  Marcel
  

> Vielen Dank.
>  
> Gruß
>  barsch
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]