www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisholomorphe funktion-polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - holomorphe funktion-polynom
holomorphe funktion-polynom < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

holomorphe funktion-polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Sa 05.05.2012
Autor: Schachtel5

Aufgabe
[mm] f:\IC->\IC [/mm] holomorphe Funktion mit [mm] |f(z)|\le C|z|^k [/mm] für ein [mm] k\in \IN, C\in \IR. [/mm]
Zu zg. f ist ein Polynom mit [mm] deg(f)\le [/mm] k


Hallo, mein Ansatz wäre:
ich komme auf g(z):= [mm] \frac{f(z)-c_0-c_1z-...-c_{k-1}z^{k-1}}{z^k}. [/mm] Will nun zeigen, dass g holomorph und beschränkt ist,dh. konstant um dann die Behauptung zu kriegen, ist mein Ansatz so richtig?
|g(z)|=| [mm] \frac{f(z)-c_0-c_1z-...-c_{k-1}z^{k-1}}{z^k}|= |\frac{f(z)}{z^k}-\frac{c_0}{z^k}-...\frac{c_{k-1}z^{k-1}}{z^k}| [/mm] Kann ich nun irgendwie die Beträge reinziehen, oder wie kann ich nun abschätzen und dabei
die Voraussetzung [mm] |f(z)|\le C|z|^k, [/mm] also [mm] \frac{|f(z)|}{z^k}\leC [/mm] benutzen ?D.h. bin mir nicht sicher, wie der Abschätzungsschritt genau aussehen muss. Wie kann ich nun genau begründen, dass g beschränkt ist?
Oder ist das alles nicht richtig bisher?
Würde mich über Hilfe freuen.LG

        
Bezug
holomorphe funktion-polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Sa 05.05.2012
Autor: fred97

Die Funktion [mm] f(z)/z^k [/mm] hat in z=0 eine hebbare Singularität, kann also auf [mm] \IC [/mm] zu einer beschränkten ganzen Funktion holomorph fortgesetzt werden.

Hilft das ?

FRED

Bezug
                
Bezug
holomorphe funktion-polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Sa 05.05.2012
Autor: Schachtel5

Hi, hmm, ist dann mein Asnatz nicht zu gebrauchen? Wie sieht denn so eine holomorphe Fortsetzung aus, irgentwie verstehe ich das nicht so ganz..

Bezug
                        
Bezug
holomorphe funktion-polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 So 06.05.2012
Autor: fred97

Wir setzen [mm] g(z):=f(z)/z^k [/mm]  für z [mm] \in \IC [/mm] \ {0}

Dann ist |g(z)| [mm] \le [/mm] C für z [mm] \in \IC [/mm] \ {0}.  Nach dem Riemannschen Hebbarkeitssatz hat g in z=0 eine hebbare Singularität.

Also gibt es eine ganze Funktion h mit g=h auf [mm] \IC [/mm] \ {0}.

Damit ist h auf [mm] \C [/mm] beschränkt. Der Satz von Liouville liefert: h ist konstant.
Es gibt also eine Konstante d mit h(z)=d für z [mm] \in \IC [/mm] .


Für für z [mm] \in \IC [/mm] \ {0} gilt also: [mm] f(z)=dz^k. [/mm]

Mit z [mm] \to [/mm] 0 folgt: f(0)=0.

Fazit:  [mm] f(z)=dz^k [/mm]  für alle z [mm] \in \IC. [/mm]

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]