www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenhomogenen linearen DGL 1. Ord.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - homogenen linearen DGL 1. Ord.
homogenen linearen DGL 1. Ord. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homogenen linearen DGL 1. Ord.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 Mo 18.01.2010
Autor: tynia

Aufgabe
Lösen Sie die folgenden homogenen linearen DGL 1. Ordnung

[mm] x^{2}y'+y=0 [/mm]

Hallo. ich bins schon wieder :-) Kann mir einer bei dieser Aufgabe helfen? Ich bekomme die Rechnung so einigermaßen hin, habe aber irgendwie Schwierigkeiten mit der Integrationskonstante C. Ich lasse die bei der rechnung immer weg und füge sie am ende hinzu. ich schreibe mal auf, was ich gerechnet habe:

[mm] x^{2}y'+y=0 [/mm]

y'= - [mm] \bruch{y}{x^{2}} [/mm]

[mm] \bruch{dy}{dx}= [/mm] - [mm] \bruch{y}{x^{2}} [/mm]

[mm] \bruch{dy}{y}= [/mm] - [mm] \bruch{1}{x^{2}}dx [/mm]

Jetzt integriere ich:

[mm] \integral_{}^{}{\bruch{1}{y} dy}= [/mm] - [mm] \integral_{}^{}{\bruch{1}{x^{2}} dx} [/mm]

ln(y)= [mm] \bruch{1}{x} /e^{()} [/mm]

y= [mm] e^{\bruch{1}{x}} [/mm]

Die allgemeine Lösung lautet dann: y= [mm] C*e^{\bruch{1}{x}} [/mm]

Eigentlich müsste die Integrationskonstante ja schon nach dem Integrieren auftauchen.

Kann ich das dann einfach so aufschreiben:

ln(y) +C1= [mm] \bruch{1}{x}+C2 [/mm]  
C1 und C2 kann ich ja zu C zusammenfassen

Dann habe ich [mm] ln(y)=\bruch{1}{x} [/mm] +C

Das Problem habe ich jetzt an dieser Stelle, wenn ich nach y auflöse:

[mm] y=e^{\bruch{1}{x} +C} [/mm]

Wie komme ich jetzt von dieser Stelle aus auf die Lösung y= [mm] C*e^{\bruch{1}{x}}? [/mm]

Wäre echt lieb, wenn mir jemand helfen kann. Danke



        
Bezug
homogenen linearen DGL 1. Ord.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Mo 18.01.2010
Autor: qsxqsx

Das weiss ich!

also... [mm] e^{a+b} [/mm] = [mm] e^{a}*e^{b} [/mm]

Du hast ja so [mm] e^{x}*e^{c} [/mm] ...weil jetzt aber c eine Konstante ist, ist [mm] e^{c} [/mm] eine neue Konstante, die du einfach als neue Konstante schreiben kannst...z.B. [mm] e^{c} [/mm] = d

Bezug
                
Bezug
homogenen linearen DGL 1. Ord.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Mo 18.01.2010
Autor: tynia

Das habe ich mir fast gedacht, war mir aber nicht sicher.

Vielen liben dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]