www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemehomogenes LGS / det= 0
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - homogenes LGS / det= 0
homogenes LGS / det= 0 < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homogenes LGS / det= 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Mo 02.11.2009
Autor: Igor1

Aufgabe
Für ein lineares , homogenes Gleichungssystem
[mm] ax_{1}+ bx_{2}=0 [/mm]
[mm] cx_{1}+ dx_{2}=0 [/mm]

definieren wir die Determinante det=ad-bc.

Zeigen Sie: Die Gleichungen sind genau dann Vielfache von einander, wenn
det=0 gilt.

Hallo,

man weiß, dass das homogene LGS mindestens die triviale Lösung
[mm] (x_{1},x_{2})=(0,0) [/mm] hat. Wenn man diese Lösung in die Gleichungen einsetzt , dann ist die linke und die rechte Seite gleich null. Daraus muss
jedoch nicht gefolgert werden, dass ad-bc=0 ist. Oder? Denn , man kann mit der Lösung [mm] (x_{1},x_{2})=(0,0) [/mm] beliebige Werte für a,b,c,d setzen.

Ist das ein Gegenbeispiel?


Danke und Gruss !
Igor

        
Bezug
homogenes LGS / det= 0: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Mo 02.11.2009
Autor: Zwerglein

Hi, Igor,

> Für ein lineares , homogenes Gleichungssystem
>  [mm]ax_{1}+ bx_{2}=0[/mm]
>  [mm]cx_{1}+ dx_{2}=0[/mm]
>  
> definieren wir die Determinante det=ad-bc.
>  
> Zeigen Sie: Die Gleichungen sind genau dann Vielfache von
> einander, wenn
>  det=0 gilt.

> man weiß, dass das homogene LGS mindestens die triviale
> Lösung
> [mm](x_{1},x_{2})=(0,0)[/mm] hat. Wenn man diese Lösung in die
> Gleichungen einsetzt , dann ist die linke und die rechte
> Seite gleich null. Daraus muss
>  jedoch nicht gefolgert werden, dass ad-bc=0 ist. Oder?
> Denn , man kann mit der Lösung [mm](x_{1},x_{2})=(0,0)[/mm]
> beliebige Werte für a,b,c,d setzen.

Vermutlich denkst Du zu kompliziert!
Du sollst doch lediglich zeigen, dass die Determinante =0 wird,
wenn die Gleichungen Vielfache voneinander sind und umgekehrt.

Dazu würd' ich den Fall a=0 vorwegnehmen und anschließend den Fall a [mm] \not=0 [/mm] beweisen.
Dazu ein paar Hinweise von mir:
Wenn die Gleichungen Vielfache voneinander sind, dann gibt es ein k [mm] \not=0 [/mm] so,
dass c = k*a und d = k*b.
Wenn Du nun die 1. Gleichung nach k auflöst und in die 2. Gleichung (d = k*b)
einsetzt, kriegst Du nach Umformung wie gewünscht: ad - bc = 0.

Den Rest kriegst Du auch noch hin!

mfG!
Zwerglein  

Bezug
                
Bezug
homogenes LGS / det= 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Di 03.11.2009
Autor: Igor1

Hallo Zwerglein,

wie kommt man auf c=k*a und d=k*b ? Wie leitet man das her?

Danke und Gruss !
Igor

Bezug
                        
Bezug
homogenes LGS / det= 0: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Di 03.11.2009
Autor: Zwerglein

Hi, Igor,

> wie kommt man auf c=k*a und d=k*b ? Wie leitet man das her?

Der Beweis für die eine Richtung ist doch:
"Die beiden Gleichungen sind Vielfache voneinander => ad - bc = 0 "

Also: Gleichung (II) ist Vielfaches - z.B. k-Faches - von Gleichung (I)

(II) = k* (I)

Womit sich automatisch c = k*a  und d = k*b ergibt!

mfG!
Zwerglein


Bezug
                                
Bezug
homogenes LGS / det= 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Di 03.11.2009
Autor: Igor1

Hallo Zwerglein,

Du schreibst, dass das sich "automatisch" ergibt. Die Frage ist : durch
Koeffizientenvergleich ? (Koeffizientenvergleich kenne ich nur bei Polynomen) . Also erstmal steht da : [mm] kax_{1} [/mm] + [mm] kbx_{2}=cx_{1}+dx_{2}. [/mm]
Wie man auf c=ka und d=kb kommt, kann ich nicht sofort sehen.

Nochmal Danke und Gruss!
Igor

Bezug
                                        
Bezug
homogenes LGS / det= 0: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Di 03.11.2009
Autor: Herby

Hallo,

> Hallo Zwerglein,
>  
> Du schreibst, dass das sich "automatisch" ergibt. Die Frage
> ist : durch
> Koeffizientenvergleich ? (Koeffizientenvergleich kenne ich
> nur bei Polynomen) . Also erstmal steht da :
> [mm] \red{ka}x_{1}+kbx_{2}=\red{c}x_{1}+dx_{2} [/mm]

links steht [mm] x_1 [/mm] und rechts steht [mm] x_1 [/mm] und die Koeffizienten sind einmal [mm] \red{ka} [/mm] und einmal [mm] \red{c} [/mm] -- also ka=c

>  Wie man auf c=ka und d=kb kommt, kann ich nicht sofort
> sehen.


Lg
Herby

Bezug
                                                
Bezug
homogenes LGS / det= 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Di 03.11.2009
Autor: Igor1

Hallo,

erstmal,gibt es einen Beweis dazu, dass man die Koeffizienten einfach vergleichen kann?
Ist die Lösung dabei eindeutig , d.h nehmen wir an, dass c=ka ; kann es dann sein , dass c noch irgendwelche Werte annehmen kann?

Gruss
Igor

Bezug
                                                        
Bezug
homogenes LGS / det= 0: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Di 03.11.2009
Autor: Zwerglein

Hi, Igor,

die beiden Gleichungen sind Vielfache voneinander, wenn sie
FÜR ALLE WERTEPAARE [mm] (x{1};x_{2}) [/mm]
Vielfache voneinander sind.
Insofern ist das dasselbe wie beim Koeffizientenvergleich von Polynomen.

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]