www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraidempotente Matrix/Projektion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - idempotente Matrix/Projektion
idempotente Matrix/Projektion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

idempotente Matrix/Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:36 Fr 16.03.2007
Autor: ThommyM

Hallo!

Leider sind meine Lineare Algebra Vorlesungen schon etwas her und trotz des Durchforstens meiner Unterlagen finde ich nicht die Antwort zu meiner Frage, die in einem fachfremden Zusammenhang aufgetreten ist. Und zwar geht es um eine idempotente Matrix, also Matrizen, die wenn man sie mit sich selbst multipliziert wieder die Matrix ergeben und die zusätzlich noch symmetrisch ist.
Dass eine idempotente Matrix eine Projektion auf das Bild der zur Matrix gehörenden Abbildung darstellt, ist mir ja irgendwie klar. Aber wie sieht diese Projektion aus bzw. ist sie orthogonal? Und wenn ja, inwieweit steht diese Orthogonalität im Zusammenhang mit der Symmetrie der Matrix? Bin jetzt schon einige Zeit am grübeln, aber ich komm nicht drauf...  

        
Bezug
idempotente Matrix/Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 Fr 16.03.2007
Autor: angela.h.b.

>Und zwar geht es um eine
> idempotente Matrix, also Matrizen, die wenn man sie mit
> sich selbst multipliziert wieder die Matrix ergeben

Hallo,

das bedingt, daß alle Eigenwerte entweder =0 oder =1 sind.


>und die

> zusätzlich noch symmetrisch ist.

Das sagt uns, daß alle Eigenwerte reell sind (was ja aufgrund der Eigenschaft "idempotent" schon klar ist),daß die Eigenvektoren zu verschiedenen Eigenwerten aufeinander senkrecht stehen, und daß sie eine ONB aus Eigenvektoren hat.

Hier habe wir dann die Orthogonalität der Projektion:

Die Basisvektoren, welche Eigenvektoren zum Eigenwert 1 sind, sind  die, die den Raum, auf welchen projeziert wird, aufspannen.

Die Basisvektoren, welche Eigenvektoren zum EW 0 sind, sind senkrecht zu ersteren und werden auf die 0 abgebildet.

Gruß v. Angela

Bezug
                
Bezug
idempotente Matrix/Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:46 Sa 17.03.2007
Autor: ThommyM

Ah ja, ich glaube ich verstehe, vielen Dank. Du meinst also, dass es Eigenvektoren gibt, die eine Orthonormalbasis des Raumes bilden, aus dem heraus abgebildet wird, oder? Dann habe ich es glaub ich verstanden.

Bezug
                        
Bezug
idempotente Matrix/Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 Sa 17.03.2007
Autor: angela.h.b.


> Ah ja, ich glaube ich verstehe, vielen Dank. Du meinst
> also, dass es Eigenvektoren gibt, die eine Orthonormalbasis
> des Raumes bilden, aus dem heraus abgebildet wird, oder?

Ja, das ist die Stelle, an der die Symmetrie der Matrix zum Tragen kommt, wonach Du ja fragtest.

Gruß v. Angela


> Dann habe ich es glaub ich verstanden.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]