www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikimmer wieder würfeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - immer wieder würfeln
immer wieder würfeln < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

immer wieder würfeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 So 14.06.2009
Autor: matheja

Moinsen.Häng hier bei einer aufgabe fest.würd mich freuen wenn ihr mir helfen könntet :)

Aufgabe
Spieler A und B würfeln in der Reihenfolge A;B;B; A;
B; A;B; A;B; A;B; A;... solange, bis einer der Spieler eine Sechs erhält. Wie groß ist die Wahrscheinlichkeit, daß A gewinnt?

Irgendwie steh ich aufn schlauch :(

Ich hab mir überlegt zunächst einmal den Erwartungswert zu berechenem

der liegt ja bei 3,5....

mir fehlt echt ein ansatz

freu mich auf hilfe :)

        
Bezug
immer wieder würfeln: Baumdiagramm
Status: (Antwort) fertig Status 
Datum: 11:44 So 14.06.2009
Autor: Al-Chwarizmi


> AUFGABE:
> Spieler A und B würfeln in der Reihenfolge A;B;B;A;
> B;A;B; A;B;A;B; A;... solange, bis einer der Spieler
> eine Sechs erhält. Wie groß ist die Wahrscheinlichkeit, daß
> A gewinnt?


Hallo matheja,

ich würde einen Baum zeichnen. Der wird ziemlich
"dünn", denn stets, wenn eine Sechs aufgetreten
ist, muss man diesen Ast ja nicht weiterführen.
Der Baum wird trotzdem unendlich lang, aber ganz
regelmässig. So regelmässig, dass man die unend-
lich vielen Summanden, die zur Wahrscheinlichkeit
P(A gewinnt) beitragen, nach einer einfachen Formel
addieren kann.


LG    Al-Chwarizmi

Bezug
                
Bezug
immer wieder würfeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 So 14.06.2009
Autor: matheja

Aufgabe
Erstma Danke für deine Anregungen.

Ich hab mir jetzt einen baum aufgemahlt, der für Spieler A und B immer dann abbricht wenn eine sechs gwürfelt wird. so ganz schlauch wird ich davon nicht
Anzahl der Ereignisse/ anzahl aller möglichkeiten= p( A gewinnt)




Das problem ist dass der baum so unübersichtlich ist dass ich keine regelmäßigkeit feststellen kann :(



Bezug
                        
Bezug
immer wieder würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 So 14.06.2009
Autor: ms2008de

Hallo,
schauen wir uns doch mal die einzelnen Fälle an, wann A gewinnt:
A gewinnt nach einem Wurf,  P= [mm] \bruch{1}{6} [/mm]
A gewinnt nach 4 Würfen, P= [mm] (\bruch{5}{6})^{3}*\bruch{1}{6} [/mm]
A gewinnt nach 6 Würfen, P= [mm] (\bruch{5}{6})^{5}*\bruch{1}{6} [/mm]
A gewinnt nach 8 Würfen, P= [mm] (\bruch{5}{6})^{7}*\bruch{1}{6} [/mm]
[mm] \vdots [/mm]
Nun sollte man die Regelmäßigkeit festgestellt haben und alle Einzelwahrscheinlichkeiten aufsummieren, sodass man folgende Formel erhält:
P(A gewinnt)= [mm] \bruch{1}{6} [/mm] + [mm] \bruch{1}{6}*\summe_{i=1}^{\infty}(\bruch{5}{6})^{2i+1}. [/mm]
Das sollte nun kein allzu großes Problem mehr für dich sein daraus die Wahrscheinlichkeit für A gewinnt auszurechnen.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]