www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungeninhomogenes System von DGL's
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - inhomogenes System von DGL's
inhomogenes System von DGL's < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inhomogenes System von DGL's: Angabe der Partikulären Lösung
Status: (Frage) beantwortet Status 
Datum: 21:52 Mi 25.08.2010
Autor: tony90

Aufgabe
Es soll die partikuläre Lösung des folgenden Systems von DGL's angegeben werden:

[mm] \pmat{ 2 & 1 \\ 1 & 5 }*\vektor{u_{1}'' \\ u_{2}''} [/mm] + [mm] \pmat{ 8 & 1 \\ 1 & 17 }*\vektor{u_{1} \\ u_{2}}=\vektor{-3 \\ 6}+\vektor{0\\ cos(t)} [/mm]

Hallo, ich hab hier ein System von Differentialgleichungen,...
wie kann ich das jetzt lösen, da ich noch nie das problem einer Massenmatrix hatte, die nicht auf diagonalform war.

Desweiteren würde ich gerne wissen ob ich den Ansatz

[mm] u_{partikulär}= [/mm] A*sin(t)+B*cos(t) überhaupt verwenden darf, da ja nur in der Unteren gleichung ein cos(t) auf der rechten Seite auftritt.

Danke vielmals...

        
Bezug
inhomogenes System von DGL's: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Mi 25.08.2010
Autor: MathePower

Hallo tony90,

>Aufgabe

>   Es soll die partikuläre Lösung des folgenden Systems von DGL's angegeben werden:

> $ [mm] \pmat{ 2 & 1 \\ 1 & 5 }\cdot{}\vektor{u_{1}'' \\ u_{2}''} [/mm] $ + $ [mm] \pmat{ 8 & 1 \\ 1 & 17 }\cdot{}\vektor{u_{1} \\ u_{2}}=\vektor{-3 \\ 6}+\vektor{0\\ cos(t)} [/mm] $

>   Hallo, ich hab hier ein System von Differentialgleichungen,...

wie kann ich das jetzt lösen, da ich noch nie das problem einer Massenmatrix hatte, die nicht auf diagonalform war.


Multipliziere zunächst obiges System mit
der inversen der Matrix


[mm]\pmat{ 2 & 1 \\ 1 & 5 }[/mm]

durch.

Dann erhälst Du die Darstellung

[mm]\vektor{u_{1}'' \\ u_{2}''} + B\vektor{u_{1} \\ u_{2}}=C(t)[/mm]

Wandle dann dieses System um  in ein System von DGLn
erster Ordnung.


> Desweiteren würde ich gerne wissen ob ich den Ansatz

> $ [mm] u_{partikulär}= [/mm] $ A*sin(t)+B*cos(t) überhaupt verwenden darf, da ja nur in der Unteren gleichung ein cos(t) auf der rechten Seite auftritt.


Sofern cos(t) bzw sin(t) keine Lösung des homogenen
DGL-Systems sind, ja.

>Danke vielmals...


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]