www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationintegralidentität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - integralidentität
integralidentität < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integralidentität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 So 13.01.2013
Autor: Schadowmaster

Aufgabe
Sei $D [mm] \subseteq \IR^n$ [/mm] konvex, [mm] $\Phi: [/mm] D [mm] \to \IR^n$ [/mm] stetig differenzierbar.
Zeige für alle $x,y [mm] \in [/mm] D$:
[mm] $\Phi(x) [/mm] - [mm] \Phi(y) [/mm] = [mm] \int_0^1 \Phi'(y+t(x-y))(x-y) [/mm] dt$

Hinweis:
Betrachte [mm] $\phi: [/mm] [0,1] [mm] \to \IR^n, [/mm] t [mm] \mapsto \Phi(y+t(x-y))$ [/mm]

moin,

Ich hab mit obiger Aufgabe gerade so meine Probleme.
Es fängt schon mit der Frage an, wie denn ein (Riemann?)integral einer Funktion von [mm] $\IR \to \IR^n$ [/mm] überhaupt definiert ist, denn da [mm] $\Phi [/mm] : [mm] \IR^n \to \IR^n$, [/mm] ist [mm] $\Phi'$ [/mm] eine $n [mm] \times [/mm] n$ Matrix und wenn wir $(x-y)$ dranmultiplizieren landen wir im [mm] $\IR^n$. [/mm] Die linke Seite lässt vermuten, dass der Wert des Integrals im [mm] $\IR^n$ [/mm] liegen soll; ist das ggf. eintragsweise zu verstehen?

Dann nochmal kurz zu dem, was ich verstehe bzw. zu verstehen glaube:
Es ist [mm] $\{y+t(x-y) \mid t \in [0,1]\}$ [/mm] die Verbindungsgerade zwischen $x$ und $y$, die, da $D$ konvex ist, komplett in $D$ liegt; damit ist wenigstens [mm] $\phi$ [/mm] wohldefiniert.
Da [mm] $\Phi$ [/mm] stetig ist, ist [mm] Bild($\phi$) [/mm] die "Verbindung" zwischen [mm] $\Phi(x)$ [/mm] und [mm] $\Phi(y)$; [/mm] allerdings muss das wohl kaum eine Gerade sein und ich weiß nicht in wie weit mir das was bringt.


Also für Tipps, Hilfe, etc. wäre ich euch sehr dankbar.


lg

Schadow

        
Bezug
integralidentität: Antwort
Status: (Antwort) fertig Status 
Datum: 05:22 Mo 14.01.2013
Autor: fred97


> Sei [mm]D \subseteq \IR^n[/mm] konvex, [mm]\Phi: D \to \IR^n[/mm] stetig
> differenzierbar.
>  Zeige für alle [mm]x,y \in D[/mm]:
>  [mm]\Phi(x) - \Phi(y) = \int_0^1 \Phi'(y+t(x-y))(x-y) dt[/mm]
>  
> Hinweis:
>  Betrachte [mm]\phi: [0,1] \to \IR^n, t \mapsto \Phi(y+t(x-y))[/mm]
>  
> moin,
>  
> Ich hab mit obiger Aufgabe gerade so meine Probleme.
>  Es fängt schon mit der Frage an, wie denn ein
> (Riemann?)integral einer Funktion von [mm]\IR \to \IR^n[/mm]
> überhaupt definiert ist, denn da [mm]\Phi : \IR^n \to \IR^n[/mm],
> ist [mm]\Phi'[/mm] eine [mm]n \times n[/mm] Matrix und wenn wir [mm](x-y)[/mm]
> dranmultiplizieren landen wir im [mm]\IR^n[/mm]. Die linke Seite
> lässt vermuten, dass der Wert des Integrals im [mm]\IR^n[/mm]
> liegen soll; ist das ggf. eintragsweise zu verstehen?


Genau so !


>  
> Dann nochmal kurz zu dem, was ich verstehe bzw. zu
> verstehen glaube:
>  Es ist [mm]\{y+t(x-y) \mid t \in [0,1]\}[/mm] die Verbindungsgerade
> zwischen [mm]x[/mm] und [mm]y[/mm], die, da [mm]D[/mm] konvex ist, komplett in [mm]D[/mm]
> liegt; damit ist wenigstens [mm]\phi[/mm] wohldefiniert.
>  Da [mm]\Phi[/mm] stetig ist, ist Bild([mm]\phi[/mm]) die "Verbindung"
> zwischen [mm]\Phi(x)[/mm] und [mm]\Phi(y)[/mm]; allerdings muss das wohl kaum
> eine Gerade sein und ich weiß nicht in wie weit mir das
> was bringt.
>  
>
> Also für Tipps, Hilfe, etc. wäre ich euch sehr dankbar.


Wir haben doch [mm] \phi(t)=\Phi(y+t(x-y)) [/mm]

Damit ist [mm] \phi'(t)=\Phi'(y+t(x-y))*(x-y) [/mm]

Also [mm] \int_0^1 \Phi'(y+t(x-y))(x-y) dt=\int_0^1 \phi'(t) dt=\phi(1)-\phi(0) [/mm]

FRED

>  
>
> lg
>  
> Schadow


Bezug
                
Bezug
integralidentität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:44 Di 15.01.2013
Autor: Schadowmaster

Hmm, Kettenregel, das ist eine Idee, ja.

Danke. ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]