www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieintegrierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - integrierbarkeit
integrierbarkeit < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integrierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:05 Mi 01.04.2009
Autor: vivo

Aufgabe
Sein [mm](\Omega, \mathcal{F}, P) = ([0,1), \mathcal{B}[0,1), \lambda_{|[0,1)})[/mm] und das Maß [mm]\mu[/mm] gegeben durch die Radon-Nikodym Dichte [mm]|x-\bruch{1}{2}|^3[/mm]

a) Entscheide ob f integrierbar bezüglich dem Maß [mm] \lambda [/mm] ist und berechne geg. das Integral

b) Entscheide ob f integrierbar ist bezüglich dem Maß [mm] \mu [/mm] und berechne geg. das Integral

Betrachte die Funktio [mm] f(x)=\begin{cases} \bruch{1}{(x-0,5)^2}, & \mbox{für } x \not=0,5 \\ 42, & \mbox{für } x = 0,5 \end{cases} [/mm]

Hallo,

a) f ist nicht integrierbar bezüglich [mm] \lambda, [/mm] da f nicht absolut uneigentlich Rieman integrierbar und der Werteberich in der Nähe der Polstelle nicht gestückelt werden kann.

b) [mm]\integral{f(x) |x-\bruch{1}{2}|^3 d\mu} = \integral{f(x) d\lambda}[/mm]

rechte Seite wegen a) nicht existent, deshalb auch linke nicht, also ist

[mm]f(x) |x-\bruch{1}{2}|^3[/mm]

nicht nach [mm] \mu [/mm] integrierbar, nur wie schließe ich jetzt hieraus, dass auch f(x) nicht nach [mm] \mu [/mm] integrierbar ist?

ich steh da irgendwie grad voll auf dem schlauch.

vielen dank für Hilfe!

        
Bezug
integrierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 03.04.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]