www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationintegrierbarkeit fn->f
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - integrierbarkeit fn->f
integrierbarkeit fn->f < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integrierbarkeit fn->f: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Do 24.04.2008
Autor: bonczi

Aufgabe
Zeigen Sie folgenden Sachverhalt mit Hilfe des Lebesgueschen Integrabilitätskriteriums. Sind die funktionen [mm] f_{n}: [a,b]\to\IR, [/mm] n=1,2..., R-integrierbar und konvergiert [mm] f_{n}\to [/mm] f gleichmäßig, so ist auch f R-integrierbar.

Hallo Leute, wollte mal wissen, ob meine Überlegungen richtig sind. Bin dankbar für jede Korrektur!

Also nach dem Lebesgueschen Int-krit. muss ich ja beweisen, dass f beschränkt ist und endlich viele Unstetigkeitsstellen (bestenfalls stetig ist) hat.

f ist stetig, da [mm] f_{n}\to [/mm] f gleichmäßig konvergiert und eine gleichmäßig konvergente Folge von Funktionen eine stetige Grenzfunktion hat. f ist also die stetige Grenzfunktion.

und f ist beschränkt, da jede in einem kompakten Intervall (hier [a,b] ) stetige Funktion beschränkt ist. (Satz vom Maximum)

daraus folgt, dass auch f Riemann-integrierbar ist.



jetzt ist noch meine frage: ist das richtig? muss ich noch die rückrichtung des beweises zeigen oder hat der beweis eine genau-dann-wenn-beziehung?

        
Bezug
integrierbarkeit fn->f: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Do 24.04.2008
Autor: MathePower

Hallo bonczi,

> Zeigen Sie folgenden Sachverhalt mit Hilfe des
> Lebesgueschen Integrabilitätskriteriums. Sind die
> funktionen [mm]f_{n}: [a,b]\to\IR,[/mm] n=1,2..., R-integrierbar und
> konvergiert [mm]f_{n}\to[/mm] f gleichmäßig, so ist auch f
> R-integrierbar.
>  Hallo Leute, wollte mal wissen, ob meine Überlegungen
> richtig sind. Bin dankbar für jede Korrektur!
>  
> Also nach dem Lebesgueschen Int-krit. muss ich ja beweisen,
> dass f beschränkt ist und endlich viele
> Unstetigkeitsstellen (bestenfalls stetig ist) hat.
>  
> f ist stetig, da [mm]f_{n}\to[/mm] f gleichmäßig konvergiert und
> eine gleichmäßig konvergente Folge von Funktionen eine
> stetige Grenzfunktion hat. f ist also die stetige
> Grenzfunktion.
>  
> und f ist beschränkt, da jede in einem kompakten Intervall
> (hier [a,b] ) stetige Funktion beschränkt ist. (Satz vom
> Maximum)
>  
> daraus folgt, dass auch f Riemann-integrierbar ist.
>  
>
>
> jetzt ist noch meine frage: ist das richtig? muss ich noch
> die rückrichtung des beweises zeigen oder hat der beweis
> eine genau-dann-wenn-beziehung?

Dieselbe Frage hast Du hier schon mal gepostet.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]