www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungintegrieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - integrieren
integrieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Do 13.08.2009
Autor: hamma

berechnung eines integrals.

[mm] \integral_{a}^{b}{\bruch{4x-2}{x^2-2x+5}dx} [/mm]

ich habe schon versucht den nenner zu substituieren...leider führt das zu keiner lösung. könntet ihr mir bitte einen ansatz geben.

        
Bezug
integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Do 13.08.2009
Autor: schachuzipus

Hallo Markus,

> berechnung eines integrals.
>  
> [mm]\integral_{a}^{b}{\bruch{4x-2}{x^2-2x+5}dx}[/mm]
>  
> ich habe schon versucht den nenner zu
> substituieren...leider führt das zu keiner lösung.
> könntet ihr mir bitte einen ansatz geben.

Forme das Integral zunächst etwas um:

[mm] $\int{\frac{4x-2}{x^2-2x+5} \ dx}=2\cdot{}\int{\frac{2x-1}{x^2-2x+5} \ dx}=2\cdot{}\int{\frac{2x-1\red{-1+1}}{x^2-2x+5} \ dx}=2\cdot{}\int{\frac{2x-2}{x^2-2x+5} \ dx}+2\cdot{}\int{\frac{1}{x^2-2x+5} \ dx}$ [/mm]

Das erste Integral ist nun ein logarithmisches Integral, also eines der Bauart [mm] $\int{\frac{f'(x)}{f(x)} \ dx}$, [/mm] das bekanntermaßen als Stammfunktion [mm] $\ln(|f(x)|)+C$ [/mm] hat. Falls es dir nicht bekannt ist, leite es dir her, indem du den Nenner substituierst, also [mm] $u(x)=x^2-2x+5$ [/mm] ...

Bleibt das hintere Integral [mm] $2\cdot{}\int{\frac{1}{x^2-2x+5} \ dx}$ [/mm]

Quadr. Ergänzung: [mm] $=2\cdot{}\int{\frac{1}{(x-1)^2+2^2} \ dx}=\frac{1}{2}\cdot{}\int{\frac{1}{\left(\frac{x-1}{2}\right)^2+1} \ dx}$ [/mm]

Nun kennst du sicher das Integral [mm] $\int{\frac{1}{z^2+1} \ dz}$ [/mm]

Damit sollte dir eine passende Substitution einfallen ...

LG

schachuzipus


Bezug
                
Bezug
integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 Do 13.08.2009
Autor: hamma

vielen dank für deine mühe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]