www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrainvarianter unterraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - invarianter unterraum
invarianter unterraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

invarianter unterraum: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:10 Sa 03.12.2005
Autor: Jacek

Hi, ich habe ein Problem:
Wir haben eine Abbildung gegeben vom  [mm] \IR^3 [/mm] in den  [mm] \IR^3; [/mm] Matrix:

A=  [mm] \pmat{ 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 } \in \IR^3 [/mm] .

Wir sollen die "f-invarianten Unterräume" bestimmen vom  [mm] \IR^3. [/mm]
So, ich finde nichts im Skript wie die invarianten U-Räume uberhaupt def sind.
Könnte mir bitte jemand verständlich machen, was ich zu tun habe?!
Verstehen muss ich es ja nicht, eben nur rechen...
Bitte.

        
Bezug
invarianter unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 So 04.12.2005
Autor: DaMenge

Hi,

nur mal eben kurz:

>  So, ich finde nichts im Skript wie die invarianten U-Räume
> uberhaupt def sind.


Es gibt ja auch mehr Quellen als ein Skript, oder?
Naja, ein f-invarianter Unterraum ist ein Unterraum U, so dass gilt [mm] $f(U)\subseteq [/mm] U$ , also das Bild von U liegt wieder in U.

Man sieht natürlich sofort, dass die beiden trivialen Unterräume diese Bedingung erfüllen, aber auch zusätzlich noch ein UVR, der durch die erste Spalte beschrieben wird...

Für eindimensional UVR ist ja klar, dass man nur die Eigenvektoren betrachten braucht, aber im mehrdimensionalem Fallist es etwas komplizierter...

>  Verstehen muss ich es ja nicht, eben nur rechen...

Oh, das lese ich jetzt erst - keine Ahnung, ob ich mir dann noch weiter Gedanken machen sollte, wenn du es ehh nicht wissen willst.
Mit der Einstellung wirst du (wahrscheinlich) aber in Mathe nicht wirklich weit kommen...

grüße
DaMenge

Bezug
                
Bezug
invarianter unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 So 04.12.2005
Autor: Jacek

Das mit dem nur rechen, blabla hörte sich härter an als gemeint.
Ich meinte, dass mir kurze Erläuterungen o.ä. ausreichen würden, damit der Antworter nicht zu lange Zeit für meine Frage in Anspruch nimmt.
Nun gut,
könnte ich bitte eine Vorgehensweise für die Aufgabe bitte bekommen?
Bitte.

Bezug
                        
Bezug
invarianter unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:42 Di 06.12.2005
Autor: Julius

Hallo!

Ist $f:V [mm] \to [/mm] V$ ein Homomorphismus, für den das charakteristische Polynom

[mm] $CP_f(x) [/mm] = [mm] \prod\limits_{i=1}^k (\lambda_i [/mm] - [mm] x)^{r_i}$ [/mm]

in Linearfaktoren zerfalle, dann sind die verallgemeinerten Eigenräume

[mm] $V_i:=kern \left((\lambda_i \cdot id_V - f)^{r_i} \right)$ [/mm]

alle $f$-invariant; diese sind also zu bestimmen.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]