inverse 8x8-Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich möchte nun die Inverse einer Matrix ermitteln. Allerdings handelt es sich dabei um eine 8x8-Matrix. Da ich das ganze in ein Programm einbauen will, muss es sich um eine rechnerische Lösung handeln.
Ich wollte es erst über die Determinante lösen, allerdings hapert es dann genau dort. Für nxn-Matrizen gibts ja nur das Gauß-Jordan-Verfahren (nicht rechnerisch umsetzbar) oder die Leibnizformel (mit 40320 Permutationen).
Nun steh ich auf dem Schlau. Hat jemand eine Idee wie man die Determinante oder gleich die Inverse berechnen kann?
Gruß
Friesenjung
(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:48 Do 05.06.2008 | Autor: | koepper |
Hallo Friesenjung,
das Gauss-Jordanverfahren ist mit einer 8 x 8 Matrix rechnerisch sicher umsetzbar. In der Regel sogar als vollständig rationales Verfahren, d.h. du rechnest mit "Brüchen" und ohne Rundungen, so daß numerische Instabilitäten nicht auftreten können.
Selbst wenn du im Verfahren runden mußt, besteht die Möglichkeit, das Ergebnis nachzukorrigieren:
Du multiplizierst die Matrix mit der (unter Rundungen) errechneten Inversen. Wenn nicht (ganz) die Einheitsmatrix herauskommt, wendest du weitere elementare Zeilenumformungen auf die erhaltene Matrix an, die diese zur Einheitsmatrix umformen. Die selben Umformungen müssen dann auch mit der vorläufigen Näherungs-Inversen gemacht werden. Auf diese Weise erreichst du beliebige Genauigkeit.
LG
Will
|
|
|
|
|
Gut, dann versuch ichs doch mal damit
Danke
|
|
|
|