www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und Approximationinverse Interpolation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Interpolation und Approximation" - inverse Interpolation
inverse Interpolation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inverse Interpolation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Do 30.09.2004
Autor: regine

Hallo,

man kann ja z.B. nach dem Neville-Schema ein Interpolationspolynom $p$ zu gegebenen [mm] (x_i, y_i) [/mm] bestimmen. Möchte man zu gegebenem $y$ die Gleichung $p(x) = y$ nach $x$ auflösen, so kann man stattdessen ja auch näherungsweise [mm] $\tilde [/mm] x = [mm] \tilde [/mm] p(y)$ mit dem Neville-Schema bestimmen.

Seien die Daten [mm] $(x_0, y_0)=(-2,-1), (x_1, y_1)=(1,2), (x_2, y_2)=(3,3)$ [/mm] gegeben. Man bestimme $x$ so, dass $p(x)=0$ ist.

Das "normale" Neville-Schema kann ich ohne Probleme anwenden, aber wie funktioniert das nun bei der inversen Interpolation?

Danke und viele Grüße,
Regine.

        
Bezug
inverse Interpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Fr 01.10.2004
Autor: Julius

Liebe Regine!

> Seien die Daten [mm](x_0, y_0)=(-2,-1), (x_1, y_1)=(1,2), (x_2, y_2)=(3,3)[/mm]
> gegeben. Man bestimme [mm]x[/mm] so, dass [mm]p(x)=0[/mm] ist.
>
> Das "normale" Neville-Schema kann ich ohne Probleme
> anwenden, aber wie funktioniert das nun bei der inversen
> Interpolation?

Man vertauscht einfach die Rollen von $x$  und $y$. Das heißt hier Folgendes:

Finde einfach zu den Daten [mm] $(y_0,x_0)=(-1 [/mm] ,-2)$, [mm] $(y_1,x_1)=(2,1)$ [/mm] und [mm] $(y_2,x_2)=(3,3)$ [/mm] das Interpolationspolynom [mm] $q_2(x)$ [/mm] (mit dem normalen Neville-Schema) und berechne dann [mm] $q_2(0)$ [/mm] als Näherung der Nullstelle von $p$.

Ist eigentlich ganz einfach! :-)

Liebe Grüße
Julius


Bezug
                
Bezug
inverse Interpolation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:14 Fr 01.10.2004
Autor: regine

Hallo,

mir ist klar, daß ich die [mm] $x_i$ [/mm] gegen die [mm] $y_i$ [/mm] austausche und dann das Neville-Schema anwende. Ich weiß nur nicht, wie ich [mm] $\tilde [/mm] p(0)$ bestimme.  Solange habe ich doch auch noch ein $x$ in meinem Neville-Schema stehen. oder?

Ich stehe noch auf Kriegsfuss mit diesem Problem...

Danke und viele Grüße,
Regine.

Bezug
                        
Bezug
inverse Interpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Fr 01.10.2004
Autor: Julius

Liebe Regine!

Tut mir leid, jetzt verstehe ich dein Problem nicht. [verwirrt]. Ein $x$ taucht da nicht mehr auf, da du ja die Rollen von $x$ und $y$ vertauscht hast. Du bekommst durch das Neville-Schema ein Polynom raus (in $y$!) und in das setzt du einfach $y=0$ ein.

Liebe Grüße
Julius

Bezug
                                
Bezug
inverse Interpolation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:33 Fr 01.10.2004
Autor: regine

Hallo,

mist!! Ich hatte die $x$ und $y$ vertauscht, aber das Neville-Schema nicht dementsprechend abgeändert.

Ich stand mir regelrecht selber im Wege...

Naja, Danke für die Mühen!

Liebe Grüße,
Regine.

Bezug
                                        
Bezug
inverse Interpolation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Fr 01.10.2004
Autor: Julius

Liebe Regine!

Dann, so nehme ich mal an, ist jetzt alles klar, oder? :-)

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]