www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrainvertierbare Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - invertierbare Matrizen
invertierbare Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

invertierbare Matrizen: Anzahl der Elemente GL(Z/pZ)
Status: (Frage) beantwortet Status 
Datum: 17:32 Do 19.01.2006
Autor: beutelsbacher

Aufgabe
Zu berechnen ist die Anzahl der Elemente von [mm] GL_{2}( \IF_{p}). [/mm]

Hallo zusammen!
oben genannte Aufgabenstellung bereitet mir Kopfzerbrechen. Ich habe hier schon im Forum danach gesucht und die Formel dafür gefunden. [mm] (p^{2}-1)(p^{2}-p). [/mm] Ich dachte an einen Ansatz über Determinanten, da ja für invertierbare Matrizen A gilt: det(A) [mm] \not= [/mm] 0. Also wollte ich die Anzahl der nicht-invertierbaren 2x2 Matrizen von [mm] p^{4^{2}} [/mm] (der Menge aller möglichen 2x2-Matrizen) abzuziehen. Aber da komm ich irgendwie net weiter. Falscher Ansatz??
Irgendwer eine Idee??
Danke schonmal.

        
Bezug
invertierbare Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Do 19.01.2006
Autor: Hanno

Hallo.

Die Menge [mm] $Gl_n{\IF_p}$ [/mm] lässt sich bijektiv auf die Menge der n-Tupel linear unabhängiger Vektoren aus [mm] $\IF_p^n$ [/mm] abbilden. Wir können also auch zählen, auf wie viele Weisen wir ein solches n-Tupel konstruieren können.
Für den ersten Vektor gibt es [mm] $p^n-1$ [/mm] Möglichkeiten; warum? jede Komponente kann die Werte $0,1,2,...,p-1$ annehmen, der Nullvektor ist jedoch auszuschließen, da die Menge der Vektoren im entstehenden n-Tupel sonst nicht mehr linear unabhängig sein könnte. Für den zweiten Vektor bleiben genau die Vektoren, die nicht im Erzeugnis des ersten liegen; da es genau $p$ Vielfache des ersten Vektors gibt, gibt es von diesen genau [mm] $p^n-p$. [/mm] Der dritte Vektor darf nicht im Erzeugnis der ersten beiden liegen, wofür es, wie man analog begründet, genau [mm] $p^n-p^2$ [/mm] Möglichkeiten gibt.
So fortfahrend erhält man [mm] $(p^n-1)(p^n-p)(p^n-p^2)\cdots (p^n-p^{n-1})$ [/mm] als Anzahl der betrachteten $n$-Tupel bzw. der Mächtigkeit von [mm] $Gl_{n}{\IF_p}$. [/mm]


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]