www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigesirreduzible Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - irreduzible Polynome
irreduzible Polynome < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:06 Di 07.07.2009
Autor: Unk

Aufgabe
Man gebe ein irreduzibles Polynom vom Grad 3 mit Koeffizienten in [mm] \mathbb{F}_2 [/mm] an und man gebe ein irreduzibles Polynom in [mm] \mathbb{Q}[T] [/mm] an, das als Element von [mm] \mathbb{R}[T] [/mm] nicht irreduzibel ist.  

Hallo,

als erstes Polynom habe ich mir [mm] T^3+1 [/mm] genommen. Ich denke, dass dies auch irreduzibel in [mm] \mathbb{F}_2 [/mm] ist, oder habe ich etwas übersehen?

Bei dem zweiten fällt mir jetzt keins ein, ich will aber nicht nur einfach eines gesagt bekommen, sondern vielmehr einige Tipps, wie man eines findet.

Für Tipps bin ich dankbar.



        
Bezug
irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 02:08 Di 07.07.2009
Autor: schachuzipus

Hallo Unk,

> Man gebe ein irreduzibles Polynom vom Grad 3 mit
> Koeffizienten in [mm]\mathbb{F}_2[/mm] an und man gebe ein
> irreduzibles Polynom in [mm]\mathbb{Q}[T][/mm] an, das als Element
> von [mm]\mathbb{R}[T][/mm] nicht irreduzibel ist.
> Hallo,
>  
> als erstes Polynom habe ich mir [mm]T^3+1[/mm] genommen. Ich denke,
> dass dies auch irreduzibel in [mm]\mathbb{F}_2[/mm] ist, oder habe
> ich etwas übersehen?

Ja, hast du.

Polynome vom Grad 2 oder 3 sind über Körpern genau dann irreduzibel, wenn sie keine Nullstellen haben.

[mm] $T^3+1$ [/mm] hat aber über [mm] $\mathbb{F}_2$ [/mm] die Nullstelle [mm] $\overline{1}$ [/mm]

Da musst du also noch ein bisschen basteln ;-)

>  
> Bei dem zweiten fällt mir jetzt keins ein, ich will aber
> nicht nur einfach eines gesagt bekommen, sondern vielmehr
> einige Tipps, wie man eines findet.

Da hier kein Grad vorgeschrieben ist, nimm am einfachsten ein quadratisches.

>  
> Für Tipps bin ich dankbar.

Mein Tipp: Kennst du den Beweis, dass [mm] $\sqrt{2}$ [/mm] nicht rational ist?

LG

schachuzipus


Bezug
                
Bezug
irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 Di 07.07.2009
Autor: Unk

Ok, für das erste habe ich jetzt [mm] T^3+T^2+1=0. [/mm] So wie ich das sehe, erfüllt weder T=0, noch T=1 die Gleichung, also irreduzibel, right?

Fürs zweite dann einfach [mm] T^2-2=0. [/mm] Hat in [mm] \mathbb{Q} [/mm]  keine Nullstelle, aber in [mm] \mathbb{R}, [/mm] nämlich [mm] \sqrt{2}. [/mm]

Bezug
                        
Bezug
irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 02:00 Mi 08.07.2009
Autor: schachuzipus

Hallo nochmal,

> Ok, für das erste habe ich jetzt [mm]T^3+T^2+1=0.[/mm] So wie ich
> das sehe, erfüllt weder T=0, noch T=1 die Gleichung, also
> irreduzibel, right?
>  
> Fürs zweite dann einfach [mm]T^2-2=0.[/mm] Hat in [mm]\mathbb{Q}[/mm]  keine
> Nullstelle, aber in [mm]\mathbb{R},[/mm] nämlich [mm]\sqrt{2}.[/mm]  


Right you are!

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]