www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperirreduzible Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - irreduzible Polynome
irreduzible Polynome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Fr 22.10.2010
Autor: savage

Aufgabe
Es sei [mm] K=F_3=\{-1,0,1\} [/mm] der Körper mit 3 elementen.
Gib alle irreduziblen Polynome aus K[X] an, deren Grad höchstens vier ist.

hallo,

gibt es hier einen bestimmten weg, um diese polynome herauszufinden, oder ist die einzige möglichkeit, alle möglichkeiten durchzuprobieren und die jeweiligen polynome auf nullstellen zu überprüfen?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
irreduzible Polynome: Oder reduzible bestimmen
Status: (Antwort) fertig Status 
Datum: 22:39 Fr 22.10.2010
Autor: moudi

Hallo savage

Du kannst auch alle reduziblen Polynome bestimmen, die uebrig bleibenden muessen dann irreduzubel sein.

Die Reduziblen zerfallen vollstaendig, also drei Nullstellen (mit Vielfachheit) oder sind das Produkt eines Irreduziblen vom Grad 2 mit einem Linearfaktor.

mfG Moudi

Bezug
                
Bezug
irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Sa 23.10.2010
Autor: savage

polynome vom grad 0 und 1 kommen nicht in frage.

ich habe mich jetzt an denen von grad 2 versucht, und habe jetzt schon 18 verschiedene möglichkeiten für polynome vom grad 2.

ich kann mir kaum vorstellen, dass der sinn dieser aufgabe der ist, dass man mehrere hundert möglichkeiten durchprobiert.

wenn ich alle reduziblen polynome bestimmen möchte, dann muss ich ja trotzdem alle möglichkeiten durchprobieren.

da muss es doch sicherlich einen trick bei geben..

Bezug
                        
Bezug
irreduzible Polynome: Einfacherer Weg
Status: (Antwort) fertig Status 
Datum: 22:45 Sa 23.10.2010
Autor: moudi

Man kann sich auf Polynome mit Leitkoeffizient 1 beschraenken. Ist ein Polynom vom Grad 3 reduzibel, so besitzt es einen Linearfaktor, also eine Nullstelle. Diese Nullstelle kann nur 0, 1 oder -1 sein.

Jetzt kannst du alle Polynome mit Nullstelle 0 ausschliessen (einfach).
Du kannst Polynome mit Nullstelle 1 einfach finden (Tipp Summe der Koeffizienten! )
Du kannst Polynome mit Nullstelle -1 einfach finden (Tipp alternierende Summe der Koeffizienten!)

Ich komme so auf 8 Irreduzible Polynome.

mfG Moudi

Bezug
                                
Bezug
irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Mi 27.10.2010
Autor: savage

entschuldige bitte die späte antwort.

ich habe bisher erst 6 irreduzible polynome finden können:

1) [mm] x^2+x-1 [/mm]
2) [mm] x^2-x-1 [/mm]
3) [mm] x^2+1 [/mm]

diese haben alle leitkoeffizient 1.

nun habe ich aber auch 3 polynome finden können, deren leitkoeffizient -1 ist:

[mm] 4)-x^2+x+1 [/mm]
[mm] 5)-x^2-x+1 [/mm]
[mm] 6)-x^2-1 [/mm]

diese sind bisher allerdings nur vom grad 2.

auffallend ist, dass die polynome jeweils das "umgekehrte" vorzeichen besitzen, deshalb vermute ich, dass ich, wenn du richtig liegst mit 8 polynomen, ich nur noch 1 weiteres finden muss, und dann nur noch das vorzeichen "umkehren" muss, um das letzte zu erhalten.

oder liege ich mit meinen überlegungen weit daneben?


edit: ich habe nun auch nummer 7 und 8 gefunden:
7) [mm] -x^3+x^2-x-1 [/mm]
8) [mm] x^3-x^2+x+1[/mm]

Bezug
                                        
Bezug
irreduzible Polynome: Nur 1 irreduzibles Polynom
Status: (Antwort) fertig Status 
Datum: 19:05 Do 28.10.2010
Autor: moudi

Nein es sind 8 Polynome (mit Leitkoeffizient 1) vom Grad 3, die irreduzibel sind.

Wenn [mm] $p(x)=ax^3+bx^2+cx+d$ [/mm] ein reduzibles Polynom ist, dann besitzt es einen Linearfaktor und damit eine Nullstelle in $Z/3Z$.

Wegen $p(0)=d$, ist  $x=0$ Nullstelle gdw. d=0.
Wegen $p(1)=a+b+c+d$, ist $x=1$ Nullstelle gdw. $a+b+c+d=0$ in Z/3Z, d.h. [mm] $a+b+c+d=0\mod [/mm] 3$.
Wegen $p(-1)=-a+b-c+d$, ist $x=-1$ Nullstelle gdw. $-a+b-c+d=0$ in Z/3Z, d.h. [mm] $-a+b-c+d=0\mod [/mm] 3$.

Ein Polynom ist irreduzibel, wenn keine der obenstehenden Bedingungen erfuellt ist.

Bisher hast du nur ein irreduzibles Polynom gefunden, denn 7) und 8) sind aequivalent.

Um Schreibarbeit zu ersparen schreibe ich einfach $(a,b,c,d)$ fuer das Polynom. Dann gibt es drei Polynome der Form $(1,1,c,d)$, zwei Polynome der Form $(1,0,c,d)$ und drei Polynome der Form $(1,-1,c,d)$.

mfG Moudi



Bezug
                                                
Bezug
irreduzible Polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:46 Mo 01.11.2010
Autor: savage

danke für die erklärung, jetzt hab ich es verstanden :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]