ist gelöst! < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei A Menge, f:A [mm] \rightarrow \IC [/mm] und 1 [mm] \le [/mm] p < q [mm] \le \infty
[/mm]
Zeige: [mm] l^{p}(A) \subseteq l^{q}(A) [/mm] und [mm] ||f||_{q} \le ||f||_{p} [/mm] |
Hallo, ich muss hauptsächlich noch den Fall q= [mm] \infty [/mm] betrachten.
Ich habe so angefangen:
F.a. [mm] x_{0} [/mm] aus A gilt: [mm] |f(x_{0})| \le [/mm] sup{|f(x)| : x [mm] \in [/mm] A}=:sup(M)
Wenn sup(M)=max(M) ist, dann ist der Fall ja klar. Bei sämtlichen Beispielen die mir so spontan einfallen ist es auch so. Zu mindest bei endlichen Mengen. (*)(stimmt supM=maxM bei endl. Mengen?)(*) Dann könnte ich zu mindest schonmal den fall betrachten [mm] \varepsilon \subseteq [/mm] A , [mm] \varepsilon [/mm] ist endl.
Dann könnte ich sup{ [mm] ||f|_{\varepsilon}||_{p} [/mm] : [mm] \varepsilon \subseteq [/mm] A } bilden und wäre dann ja fertig.
Zwischen den (*) ist wohl mein eigentliches Problem, oder?
Ich hoffe, das ist nicht zu verwirrend und ihr könnt mir helfen
Danke
|
|
|
|
Hallo!
> Sei A Menge, f:A [mm]\rightarrow \IC[/mm] und 1 [mm]\le[/mm] p < q [mm]\le \infty[/mm]
>
> Zeige: [mm]l^{p}(A) \subseteq l^{q}(A)[/mm] und [mm]||f||_{q} \le ||f||_{p}[/mm]
Die [mm] L^p [/mm] - Räume sind i.A. nur dann per Inklusionsrelation sortierbar, wenn der zugrundeliegende Maßraum endlich ist. D.h. die oben betrachtete Menge A soll höchstwahrscheinlich endliches Maß haben (z.B wenn A beschränkt ist) und dann sind die Inklusionsrelationen auch relativ leicht zu zeigen. Das i.A. keine solche Inklusionsbeziehungen existieren, wird hier gezeigt http://www.mathematik.hu-berlin.de/~riedle/winter06/mass6.pdf (S.43)
>
> Hallo, ich muss hauptsächlich noch den Fall q= [mm]\infty[/mm]
> betrachten.
>
> Ich habe so angefangen:
> F.a. [mm]x_{0}[/mm] aus A gilt: [mm]|f(x_{0})| \le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
sup{|f(x)| : x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> A}=:sup(M)
Du möchtest hier wahrscheinlich sup(f) schreiben.
Eine beschränkte Funktion muss i.A. kein Maximum besitzen, fuer die Inklusion ist dies aber auch nicht wirklich relevant. Schau dir nochmals die Definition der Unendlich-Norm an, und beruecksichtige, dass A endliches Mass hat, dann sollte es dir gelingen, die Inklusion zu zeigen.
>
> Wenn sup(M)=max(M) ist, dann ist der Fall ja klar. Bei
> sämtlichen Beispielen die mir so spontan einfallen ist es
> auch so. Zu mindest bei endlichen Mengen. (*)(stimmt
> supM=maxM bei endl. Mengen?)(*) Dann könnte ich zu mindest
> schonmal den fall betrachten [mm]\varepsilon \subseteq[/mm] A ,
> [mm]\varepsilon[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
ist endl.
>
> Dann könnte ich sup{ [mm]||f|_{\varepsilon}||_{p}[/mm] :
> [mm]\varepsilon \subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
A } bilden und wäre dann ja fertig.
>
> Zwischen den (*) ist wohl mein eigentliches Problem, oder?
>
> Ich hoffe, das ist nicht zu verwirrend und ihr könnt mir
> helfen
> Danke
>
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 23:09 Mi 02.06.2010 | Autor: | carlosfritz |
EDIT: Habe es dank Marcels Antowort lösen können,
Danke
Hallo,
es geht hier aber um [mm] l^{p}-Räume [/mm] (Klein L) und A kann tatsächlich unendlich sein.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:56 Do 03.06.2010 | Autor: | Marcel |
Hallo,
> (*)(stimmt
> supM=maxM bei endl. Mengen?)(*)
sofern es sich z.B. um endliche Teilmengen der reellen Zahlen handelt, stimmt dies selbstverständlich.
Denn:
Sei [mm] $E\,$ [/mm] eine endliche Teilmenge der reellen Zahlen. Z.B. wegen des Vollständigkeitsaxioms existiert dann [mm] $s:=\text{sup}E \in \IR\,.$ [/mm] Also existiert eine Folge [mm] $(e_n)_n$ [/mm] in [mm] $E\,$ [/mm] mit [mm] $e_n \to s\,.$ [/mm] Angenommen, es wäre nicht [mm] $e_n=s$ [/mm] ab einem $m [mm] \in \IN\,.$ [/mm] (Anders formuliert: Angenommen, es existiert kein $m [mm] \in \IN$ [/mm] so, dass [mm] $e_n=s$ [/mm] für alle $n [mm] \ge m\,.$)
[/mm]
Wir konstruieren eine Folge [mm] $(e_{n_p})_p$ [/mm] in [mm] $E\,$ [/mm] wie folgt:
Wir finden ein [mm] $n_1 \in \IN$ [/mm] mit
$$0 < [mm] |e_{n_1}-s|=:a_1\,.$$
[/mm]
Nun finden wir ein [mm] $n_2 \in \IN\,,$ $n_2 [/mm] > [mm] n_1$ [/mm] mit
$$0 < [mm] |e_{n_2}-s|=:a_2 [/mm] < [mm] a_1\,.$$
[/mm]
.
.
.
Wir finden ein [mm] $n_k \in \IN\,,$ $n_k [/mm] > [mm] n_{k-1}$ [/mm] mit
$$0 < [mm] |e_{n_k}-s|=:a_k [/mm] < [mm] a_{k-1}\,.$$
[/mm]
.
.
.
Die so konstruierte Folge [mm] $(a_k)_k$ [/mm] ist ein streng monoton fallende Nullfolge (Beweis per Induktion und Beachtung von [mm] $e_n \to [/mm] s$!).
Für $l,m [mm] \in \IN$ [/mm] mit o.E. $l < [mm] m\,$ [/mm] gilt (umgekehrte Dreiecksungleichung: $|x-y| [mm] \ge ||x|-|y||\,,$ [/mm] insbesondere $|x-y| [mm] \ge [/mm] |x|-|y|$):
[mm] $$|e_{n_l}-e_{n_m}|=|(e_{n_l}-s)-(e_{n_m}-s)| \ge |e_{n_l}-s|-|e_{n_m}-s|=a_l-a_m\,.$$
[/mm]
Da aber wegen $l < [mm] m\,$ [/mm] und der Monotonie von [mm] $(a_k)_k$ [/mm] somit [mm] $a_l [/mm] > [mm] a_m$ [/mm] bzw. [mm] $a_l-a_m [/mm] > 0$ ist, sind die [mm] $e_{n_p}$ [/mm] alles paarweise verschiedene Elemente aus [mm] $E\,.$ [/mm] Damit haben wir eine Injektion [mm] $\IN \to [/mm] E$ ($f: [mm] \IN \to [/mm] E, [mm] \;\;\;f(p):=e_{n_p}$) [/mm] gefunden, woraus folgt, dass [mm] $E\,$ [/mm] mindestens abzählbar viele Elemente haben muss. Widerspruch.
Also muss [mm] $e_n=s$ [/mm] für alle [mm] $n\,$ [/mm] ab einem [mm] $m\,$ [/mm] gelten, und damit ist [mm] $s=\text{sup}E=e_n \in [/mm] E$ (für alle $n [mm] \ge m\,,$ [/mm] insbesondere gilt also [mm] $s=e_m \in [/mm] E$) und daher [mm] $\text{sup}E=\text{max}E$.
[/mm]
Beste Grüße,
Marcel
|
|
|
|