kein ggT=>kein euklidischer R < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Hi, bei Wikipedia steht
All diesen Definitionsvarianten ist jedoch gemeinsam, dass in einem euklidischen Ring eine Division mit Rest und damit ein euklidischer Algorithmus zur Bestimmung des größten gemeinsamen Teilers (ggT) zweier Ringelemente möglich ist. Von dieser Eigenschaft ist der Name abgeleitet.
Als Beispiel wird genannt
Der Ring [mm] \IZ[\sqrt{-3}] [/mm] ist nicht euklidisch, da [mm] 2+2\sqrt{-3} [/mm] und 4 keinen ggT haben (zwei „maximale gemeinsame Teiler“ sind [mm] 1+\sqrt{-3} [/mm] und 2, die aber teilerfremd sind).
soweit so gut. Heißt, wenn zwei Elemente in einem Ring R keinen ggt haben geht der euklidische Algorithmus irgendwo schief und somit, kann R kein euklidischer Ring sein.
Meine Frage wo genau geht denn was schief beim euklidischen Algorithmus?
|
|
|
|
> Hi, bei Wikipedia steht
> All diesen Definitionsvarianten ist jedoch gemeinsam, dass
> in einem euklidischen Ring eine Division mit Rest und damit
> ein euklidischer Algorithmus zur Bestimmung des größten
> gemeinsamen Teilers (ggT) zweier Ringelemente möglich ist.
> Von dieser Eigenschaft ist der Name abgeleitet.
>
> Als Beispiel wird genannt
>
> Der Ring [mm]\IZ[\sqrt{-3}][/mm] ist nicht euklidisch, da
> [mm]2+2\sqrt{-3}[/mm] und 4 keinen ggT haben (zwei „maximale
> gemeinsame Teiler“ sind [mm]1+\sqrt{-3}[/mm] und 2, die aber
> teilerfremd sind).
>
> soweit so gut. Heißt, wenn zwei Elemente in einem Ring R
> keinen ggt haben geht der euklidische Algorithmus irgendwo
> schief und somit, kann R kein euklidischer Ring sein.
>
> Meine Frage wo genau geht denn was schief beim euklidischen
> Algorithmus?
Guck dir mal im Wikipediaartikel die erste Variante der Definition an. Hier steht im Endeffekt, dass Division mit Rest ganz klassisch wie im Euklidischen Algorithmus durchführbar ist. Ist das nicht gegeben, kannst du den Algorithmus halt nicht ausführen, da du keine Anhaltspunkte hast, wie das $q$ und das $r$ zu wählen sind, da du nicht weißt, ob nun $g(r) < g(y)$ oder nicht.
Also es geht nicht etwas schief, es geht überhaupt nichts, weil der Euklidische Algorithmus ohne eine ordentliche Division mit Rest (eben über so eine euklidische Funkion) gar nicht ordentlich definiert ist.
|
|
|
|