www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenker(f) einer abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Relationen" - ker(f) einer abbildung
ker(f) einer abbildung < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ker(f) einer abbildung: ker(f)
Status: (Frage) beantwortet Status 
Datum: 00:24 So 05.04.2009
Autor: userzwo

Aufgabe
Sei $f [mm] \hat= [/mm] <[0, 5], [0, 5]; { (0, 2), (1, 1), (2, 4), (3, 3), (4, 4), (5, 3)}>$

geben sie den ker(f) an.

hi leute,

ich hab folgendes problem.

undzwar den kern zu betimmen.

also nach Def. (Kern einer Abbildung)

Ker(f) [mm] \hat= \{(a_{1}, a_{2}) \in A \times A | f(a_{1}) = f(a_{2}) \} [/mm]


also

der Kern einer Abbildung ist die Relation, die die Elemente aus der Definitionsmenge einer Abbildung in Beziehung stellt, die zu dem gleichen Element der Bildmenge abbgebildet werden.

also 3 und 5 bilden auf die drei ab und

2 und 4 bilden beide auf die vier ab.

ist das der ker(f) : {2,3,4,5}?

vieln dank für die hilfe

gruß userzwo

        
Bezug
ker(f) einer abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 So 05.04.2009
Autor: angela.h.b.


> Sei [mm]f \hat= <[0, 5], [0, 5]; { (0, 2), (1, 1), (2, 4), (3, 3), (4, 4), (5, 3)}>[/mm]
>  
> geben sie den ker(f) an.

Hallo,

es irritieren mich die spitzen Klammern, haben die einen tieferen Sinn? Ich gehe erstmal davon aus, daß es Mengenklammern sein sollen

Es irritieren mich in der Klammer bei den ersten beiden Paaren die eckigen Klammern, die Tatsache, daß das Paar doppelt vorkommt und das Semikolon. Hat das was zu bedeuten? Wenn ich den Quelltext angucke, bin ich noch verwirrter. Ich gehe erstmal (!) davon aus, daß das alles Schlamperei ist, und daß in der Klammer 7 Zahlenpaare in runden Klammern stehen..

Auf diesen Annahmen beruht meine Antwort.

>  hi leute,
>  
> ich hab folgendes problem.
>  
> undzwar den kern zu betimmen.
>  
> also nach Def. (Kern einer Abbildung)
>  
> Ker(f) [mm]\hat= \{(a_{1}, a_{2}) \in A \times A | f(a_{1}) = f(a_{2}) \}[/mm]
>  
>
> also
>  
> der Kern einer Abbildung ist die Relation, die die Elemente
> aus der Definitionsmenge einer Abbildung in Beziehung
> stellt, die zu dem gleichen Element der Bildmenge
> abbgebildet werden.
>  
> also 3 und 5 bilden auf die drei ab und
>
> 2 und 4 bilden beide auf die vier ab.
>  
> ist das der ker(f) : {2,3,4,5}?

Wenn Du Dir die Definition des Kerns anschaust, siehst Du sofort, daß dies nicht sein kann, denn der Kern enthält nach Def. Paare. Nämlich solche, die AxA entstammen - und sofort stellt sich die nächste Frage: was ist A in diesem Falle? Ich denke: [mm] A=\{0, 1, 2, 3, 4, 5\}. [/mm]


Du stellst ja richtig fest:

> also 3 und 5 bilden auf die drei ab und
>
> 2 und 4 bilden beide auf die vier ab.

Also ist f(3)=f(5) und f(2)=f(4).

Der obigen Definition des Kerns folgend ist dann [mm] Kernf=\{ (3,5), (5,3), (2,4), (4,2)\} [/mm]

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]