www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigeskompakte Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - kompakte Mengen
kompakte Mengen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kompakte Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 Sa 01.12.2012
Autor: hilbert

Hallo, ich soll zeigen, dass wenn T ein Hausdorff-Raum ist, dass dann jede kompakte Teilmenge V von T abgeschlossen ist, und wieder jede abgeschlossene Teilmenge W von V kompakt ist.

Der Satz kompakt bedeutet beschränkt und abgeschlossen gilt hier wohl nicht, denn sonst wäre die Aufgabe ja zu einfach. Gilt der Satz nur im [mm] \IR^n [/mm] oder erfüllt der [mm] \IR^n [/mm] gerade ein paar Eigenschaften sodass kompakt [mm] \gdw [/mm] beschränkt und abgeschlossen?

Zu der Aufgabe:
Sei T ein Hausdorff-Raum, dies bedeutet, dass es zu je 2 verschiedenen x,y [mm] \in [/mm] T disjunkte [mm] \varepsilon-Umgebungen: U_{\varepsilon_{1}}(x) [/mm] und [mm] U_{\varepsilon_{2}}(y) [/mm] gibt.

V kompakt bedeutet, dass zu jeder offenen Überdeckung von V eine endliche Teilüberdeckung gewählt werden kann, die V bereits überdeckt.

Zu zeigen ist jetzt, dass T/V offen ist. Ich weiß leider nicht, wie ich die Trennungseigenschaft von T hier benutzen könnte.

Könnt ihr mir da helfen?
Vielen Dank im Voraus



Okay, ich stand ziemlich auf dem Schlauch, habe es doch geschafft. Weiß nicht, wie ich die Aufgabe auf bereits beantwortet stellen kann.

        
Bezug
kompakte Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:32 Sa 01.12.2012
Autor: Gonozal_IX

Hiho,

du könntest deine Lösung zur eigenen Kontrolle und zur Freude später Fragenden auch gerne präsentieren.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]