www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigeskompakte räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - kompakte räume
kompakte räume < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kompakte räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Fr 18.01.2008
Autor: Zerwas

Aufgabe
Welche der folgenden Räume sind kompakt?
(a) [a,b], a,b [mm] \in\IR [/mm] (mit der euklidischen Metrik)
(b) [a,b], a,b [mm] \in\IR [/mm] (mit der diskreten Metrik)
(c) [mm] \{x \in\IR | x^3 \le 2 \} [/mm] (mit der euklidischen Metrik)
(d) [mm] \{x \in\IR | x^2 \le 2 \} [/mm] (mit der euklidischen Metrik)
(e) Die Teilmenge [mm] \{sin(nx) | n=1,...,N\} [/mm] von [mm] C[0,2\pi] [/mm] mit der Supremumsnorm.

Ich weiß hier einfach nicht wie ich die Kompaktheit zeigen soll.
Kompakt bedeuted, dass jede offene Überdeckung (also eine Überdeckung durch offene Teilmengen) eine endliche Teilüberdeckung hat (also, dass nur endlich viele Überdechungen "nötig" sind).

Aber wozu dann die Metrik? Und wie überhaupt zeigen?

In [mm] \IR [/mm] könnte ich auch die Folgenkompaktheit nehmen, also, dass jede Folge aus Elemente der Menge eine konvergente Teilfolge hat.

Aber wie zeige ich das?

Über einen Hinweis bzw. Anstoß wäre ich sehr dankbar.

Gruß Zerwas

Ich habe diese Frage auf keinem anderen Forum auf anderen Internetseiten gestellt.



        
Bezug
kompakte räume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:35 Fr 18.01.2008
Autor: Merle23

Die Metriken sind deswegen angegeben, weil die Topologie der Räume wohl die sein soll, die von den Metriken induziert wird (hattet ihr das schon?).

a,c,d) Dürft ihr verwenden, dass hierbei "kompakt" äquivalent zu "beschränkt und abgeschlossen" ist (Vorrausgesetzt, dass mit "euklidischer Metrik" bei euch d(x,y) = |x-y| gemeint ist)? Wenn ja, dann wäre es damit wohl am einfachsten.

b) Was ist die diskrete Metrik? d(x,x)=0 und d(x,y)=1 für x [mm] \not= [/mm] y? Daraus würde folgen, dass jede ein-punktige Menge offen wäre (warum?) und damit hat man sofort eine offenen Überdeckung, die nicht mal eine Teilüberdeckung besitzt (und deswegen erst recht keine endliche Teilüberdeckung).

e) Hier hab ich so spontan auch keine Idee.

Bezug
                
Bezug
kompakte räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Sa 19.01.2008
Autor: Zerwas

Stimmt das mit abgeschlossen und beschränkt habe ich vergessen gehabt.

(a)
Hier kann man ja dann eben genauso argumentieren:
[a,b] ist abgeschlossen und beschränkt und damit kompakt

(c)
$ [mm] \{x \in\IR | x^3 \le 2 \} [/mm] $ kann man ja auch schreiben als [mm] (-\infty [/mm] , [mm] \wurzel[3]{2}] [/mm] und damit hätte man ein zwar abgeschlossenes aber nicht beschränktes Intervall und damit auch keine Kompaktheit

(d)
hier gleiches Spiel wie bei Teil (c)  [mm] \{x \in\IR | x^2 \le 2 \} [/mm] lässt sich darstellen als [mm] [-\wurzel{2},\wurzel{2}] [/mm] ist damit abgeschlossen und beschränkt, also kompakt.

(b)
Die disktete Metrik ist wie von dir angenommen d(x,x)=0 und d(x,y)=1 für x $ [mm] \not= [/mm] $ y
die begründung verstehe ich jedoch nicht ... warum ist jede einpunktige menge offen?
Und die offene Überdeckung wären dann alle einzelnen Punkte? ... wieso besitzt diese jedoch keine teilüberdeckung? könnte man nicht immer einen Teil des Intervalls zsm fassen?

(e)
Hier habe ich auch absolut keine Idee. Ich habe schon Probleme mir zu überlegen was ich überhaupt machen soll :-[

Gruß Zerwas


Bezug
                        
Bezug
kompakte räume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Sa 19.01.2008
Autor: GodspeedYou

Zunächst ist zu überlegen, welche Mengen offen bezüglich der diskreten Metrik sind.
Die durch die Metrik definierten Umgebungen eines Punktes x sind hier die Mengen [mm] (\varepsilon [/mm] - Kugeln) U, mit U = {y [mm] \in \IR [/mm] | d(x,y) < [mm] \varepsilon [/mm] } für ein [mm] \varepsilon \in \IR [/mm]

Und offen ist eine Menge genau dann, wenn sie  eine Umgebung für jeden Punkt, den sie enthält, ist.

Betrachtet man nun {x}, so gilt natürlich, dass
{x} = {y [mm] \in \IR [/mm] | d(x,y) < 1}
Also ist {x} Umgebung von x, und somit ist jede einelementige Menge bezüglich der durch die diskrete Metrik induzierte Topologie offen.




ad e)
(e) Die Teilmenge $ [mm] \{sin(nx) | n=1,...,N\} [/mm] $ von $ [mm] C[0,2\pi] [/mm] $ mit der Supremumsnorm.

Tipp: Es handelt sich ja hier um eine endliche Menge von Funktionen.

lg,

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]