www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysiskompl. Zahlen, Betrag Argument
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - kompl. Zahlen, Betrag Argument
kompl. Zahlen, Betrag Argument < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kompl. Zahlen, Betrag Argument: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:10 Mo 02.05.2005
Autor: frau-u

Hallo,

Ich habe hier wieder eine Frage zu komplexen Zahlen. Irgendwie habe ich noch nicht ganz verstanden, wie man damit rechnet, befürchte ich.

Es geht um folgende Aufgabe:
Berechnen sie Betrag und Argument von:
1. [mm] \bruch{(1-i)^2}{1+i} [/mm]

2. [mm] (\bruch{1+i}{1-i})^{99} [/mm]

3. [mm] (\bruch{1}{2}(1+i*\wurzel{3})^n, [/mm] n=0,1,2...

So, ein Betrag ist der Abstand r einer Zahl z vom Ursprung 0. Ein Argument ist der Winkel zwischen der waagerechten Achse und der Verbindung zum Ursprung.
Das habe ich nun versucht auf die erste Aufgabe anzuwenden und ich lande für den Betrag bei:
[mm] \bruch{\wurzel{2}}{\wurzel{2}} [/mm]

Für das Argument bin ich leider recht ratlos.

Ich würde mich freuen, wenn mir jemand eventuell eine der Aufgabe vorrechnen könnte, damit ich schonmal einen Ansatzpunkt habe und mich dann mit den anderen beschäftigen kann.

Vielen Dank.

Ich habe die Frage in keinem anderen Forum gestellt.

        
Bezug
kompl. Zahlen, Betrag Argument: Argument + Betrag
Status: (Antwort) fertig Status 
Datum: 14:31 Mo 02.05.2005
Autor: Roadrunner

Hallo frau-u!


Hier mal eine allgemeine Erläuterung:

Eine komplexe Zahl $z \ := \ a + i*b$ kann man auch darstellen in der Form $z \ = \ r * [mm] \left(\cos \varphi + i*\sin \varphi\right)$ [/mm] .


Dabei ist $r$ der Betrag und berechnet sich zu: $r \ = \ |z| \ = \ [mm] \wurzel{a^2+b^2}$ [/mm]


Wie Du schon geschrieben hast, handelt es sich bei dem Argument [mm] $\varphi$ [/mm] um den Winkel zur x-Achse (bzw. Realteil-Achse der Gauß'schen Zahlenebene).

Formel: [mm] $\tan \varphi [/mm] \ = \ [mm] \bruch{b}{a}$ [/mm]



Für Deine Aufgaben mußt Du die Ausdrücke als zunächst in die Form $z \ := \ a + i*b$ überführen, z.B. durch geschicktes Erweitern mit dem Konjugierten des Nenners.


Kannst Du damit etwas weiter arbeiten?
Poste doch mal Deine Ergebnisse ...

Gruß vom
Roadrunner


Bezug
        
Bezug
kompl. Zahlen, Betrag Argument: 1. Aufgabe...
Status: (Antwort) fertig Status 
Datum: 17:57 Mo 02.05.2005
Autor: Marcel

Hallo Frau-u!

>  Berechnen sie Betrag und Argument von:
>  1. [mm]\bruch{(1-i)^2}{1+i}[/mm]

Am besten formst du den Ausdruck so um, dass du den Real- und Imaginärteil der Zahl [mm]\frac{(1-i)^2}{1+i}[/mm] direkt ablesen kannst. Dazu beachtest du (wieder einmal), dass für eine komplexe Zahl [mm]z=\mbox{Re}(z)+i*\mbox{Im}(z) \in \IC[/mm] gilt:
[mm]z*\overline{z}=\left(\mbox{Re}(z)+i*\mbox{Im}(z)\right)*\left(\mbox{Re}(z)-i*\mbox{Im}(z)\right) =\left(\mbox{Re}(z)\right)^2+\left(\mbox{Im}(z)\right)^2=|z|^2[/mm], wobei zu [mm] $z=\mbox{Re}(z)+i*\mbox{Im}(z)\in \IC$ [/mm] mit [m]\overline{z}=\mbox{Re}(z)-i*\mbox{Im}(z)[/m] die zugehörige konjugiert komplexe Zahl gemeint ist.

Bei der ersten Aufgabe machen wir also zunächst den Nenner reellwertig, dazu erweitern wir den Bruch mit dem konjugiert komplexen des Nenners und formen den Zähler so um, dass wir den Real- und Imaginärteil ablesen können:
[mm]\frac{(1-i)^2}{1+i}=\frac{(1-i)^2}{1+i}*\frac{\overline{1+i}}{\overline{1+i}} =\frac{(1-i)^2}{1+i}*\frac{1-i}{1-i} =\frac{(1-i)^3}{1^2-\underbrace{i^2}_{=-1}} =\frac{1^3+3*1^2*(-i)+3*1*(-i)^2+(-i)^3}{2}[/mm]
[mm]=\frac{1-3i-3+i}{2}=\frac{-2}{2}+i*\left(\frac{-2}{2}\right) =\blue{-1}+i*(\red{-1})[/mm]

Daher folgt:
[m]\mbox{Re}\left(\frac{(1-i)^2}{1+i}\right)=\blue{-1\[/m] sowie [m]\mbox{Im}\left(\frac{(1-i)^2}{1+i}\right)=\red{-1}[/m]. Also ergibt sich:
[mm]\left|\frac{(1-i)^2}{1+i}\right| =\wurzel{\left(\mbox{Re}\left(\frac{(1-i)^2}{1+i}\right)\right)^2+\left(\mbox{Im}\left(\frac{(1-i)^2}{1+i}\right)\right)^2} =\wurzel{(\blue{-1})^2+(\red{-1})^2}=\wurzel{2}[/mm].

Weiter folgt (beachte, dass [m]\mbox{Re}\left(\frac{(1-i)^2}{1+i}\right)=-1\not=0[/m]):
[mm]\tan(\varphi)=\frac{\mbox{Im}\left(\frac{(1-i)^2}{1+i}\right)}{\mbox{Re}\left(\frac{(1-i)^2}{1+i}\right)} =\frac{\red{-1}}{\blue{-1}}=1[/mm]

Als Kandidaten für den Winkel [mm] $\varphi \in [0,\;2\pi)$ [/mm] (im Bogenmaß!) bekommen wir hier also zwei Winkel:
[mm] $\varphi_1=\frac{\pi}{4}$, $\varphi_2=\frac{5}{4}\pi$. [/mm]

Wenn du nun guckst, wo der Punkt [mm]P(\blue{-1};\;\red{-1})[/mm] in der Gaußschen Zahlenebene liegt (nämlich im 3en Quadranten) oder eben wegen [mm]\underbrace{\left|\frac{(1-i)^2}{1+i}\right|}_{=\wurzel{2}}*\underbrace{\sin\left(\frac{\pi}{4}\right)}_{=\frac{1}{2}\wurzel{2}}=1\not=\red{-1}[/mm] erkennst du, dass der gesuchte Winkel [mm] $\varphi$ [/mm] hier lautet:
[mm]\varphi=\varphi_2=\frac{5}{4}\pi[/mm].

So, probierst du dich jetzt mal bitte an den anderen Aufgaben?

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]