www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenkomplenare Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - komplenare Vektoren
komplenare Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplenare Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Di 11.09.2007
Autor: Waschi

Aufgabe
Gegeben ist ein Quader ABCDEFGH. Entscheiden SIe, welche der angegebenen Vektoren komplenar sind.

1) [mm] \overrightarrow{AF},\overrightarrow{DC},\overrightarrow{EA} [/mm]
2) [mm] \overrightarrow{HG},\overrightarrow{CG},\overrightarrow{DA} [/mm]
1) [mm] \overrightarrow{AD},\overrightarrow{EH},\overrightarrow{DC} [/mm]

Hallo, ich habe die Lösungen zu dieser Aufgabe schon, kann mir aber nicht erklären wie diese zu stande kommen. Kann mir hier jemand weiterhelfen?
Woran erkenne ich ob ein Vektor zu einem anderen komplenar ist?

Gruß

Waschi

        
Bezug
komplenare Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Di 11.09.2007
Autor: Bastiane

Hallo Waschi!

> Gegeben ist ein Quader ABCDEFGH. Entscheiden SIe, welche
> der angegebenen Vektoren komplenar sind.
>  
> 1)
> [mm]\overrightarrow{AF},\overrightarrow{DC},\overrightarrow{EA}[/mm]
>  2)
> [mm]\overrightarrow{HG},\overrightarrow{CG},\overrightarrow{DA}[/mm]
>  1)
> [mm]\overrightarrow{AD},\overrightarrow{EH},\overrightarrow{DC}[/mm]
>  
> Hallo, ich habe die Lösungen zu dieser Aufgabe schon, kann
> mir aber nicht erklären wie diese zu stande kommen. Kann
> mir hier jemand weiterhelfen?
>  Woran erkenne ich ob ein Vektor zu einem anderen komplenar
> ist?
>  
> Gruß
>  
> Waschi

Soweit ich weiß, bedeutet "komplanar" einfach nur linear unabhängig. Weißt du, was das bedeutet? Wenn nicht, versuch es zu verstehen (Definitionen lesen), und dann ist es eigentlich klar. Du hast ja einen Quader, und alle zueinander parallelen Vektoren sind natürlich linear abhängig - sie sind ja sogar gleich (denn parallele Seiten sind beim Quader gleich lang), und alles andere müsste dann komplanar sein.

Übrigens können wir dir deine Aufgabe so nicht lösen - es ist nicht klar, welche Ecken welche Bezeichnung erhält - du müsstest schon ein Bild dazu posten oder es genau beschreiben.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
komplenare Vektoren: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:55 Di 11.09.2007
Autor: Waschi

Hallo Bastiane,

Das sind die Lösungen die ich habe: 1) ja 2) nein, da"Raumecke" 3) ja

hier ist jetzt auch die Zeichnung:

[Dateianhang nicht öffentlich]

was linear abhängig bedeutet weiß ich. Ein Vektror lässt sich auch als linearkombination der beiden anderen darstellen.

Bei 1) ist mir die Lösung verständlich, jedoch bei 2) und 3) kann ich es nicht nachvollziehen.


Gruß Waschi

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
        
Bezug
komplenare Vektoren: Erklärung
Status: (Antwort) fertig Status 
Datum: 13:51 Di 11.09.2007
Autor: statler

Hallo Waschi!

> Gegeben ist ein Quader ABCDEFGH. Entscheiden SIe, welche
> der angegebenen Vektoren komplenar sind.

Diese Eigenschaft heißt komplanar.

> 1)
> [mm]\overrightarrow{AF},\overrightarrow{DC},\overrightarrow{EA}[/mm]
>  2)
> [mm]\overrightarrow{HG},\overrightarrow{CG},\overrightarrow{DA}[/mm]
>  1)
> [mm]\overrightarrow{AD},\overrightarrow{EH},\overrightarrow{DC}[/mm]
>  
> Hallo, ich habe die Lösungen zu dieser Aufgabe schon, kann
> mir aber nicht erklären wie diese zu stande kommen. Kann
> mir hier jemand weiterhelfen?
>  Woran erkenne ich ob ein Vektor zu einem anderen komplenar
> ist?

'komplanar' heißt, in einer Ebene liegend. Wenn du die 3 Vektoren in einem Punkt 'aufhängst', sollen sie in einer Ebene liegen. Das ist bei 1) z. B. der Fall, die übliche Benamsung vorausgesetzt.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
komplenare Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Di 11.09.2007
Autor: Waschi

AAAhhhhh, vielen Dank, jetzt ist es mir klar geworden. 3) ist deshalb dann auch komplenar weil die Vektoren [mm] \overrightarrow{AD} [/mm] und [mm] \overrightarrow{EH} [/mm] quasi die gleichen sind und so zusammen mit dem Vektor [mm] \overrightarrow{DC} [/mm] eine Ebene aufspannen?!

Gruß Waschi

Bezug
                        
Bezug
komplenare Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Di 11.09.2007
Autor: angela.h.b.


>  3)
> ist deshalb dann auch komplenar weil die Vektoren
> [mm]\overrightarrow{AD}[/mm] und [mm]\overrightarrow{EH}[/mm] quasi die
> gleichen sind und so zusammen mit dem Vektor
> [mm]\overrightarrow{DC}[/mm] eine Ebene aufspannen?!

Genauso ist es.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]