www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenkomplette diskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - komplette diskussion
komplette diskussion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplette diskussion: überprüfen
Status: (Frage) beantwortet Status 
Datum: 20:10 So 07.01.2007
Autor: matheloserin

Aufgabe
Komplette Diskussion von f(x)= x-1-lnx
-Definitionsbereich
-Symmetrie
-Verhalten gegen +/- unendlich
-schnittstellen mit den achsen
-extrema
-wendestellen

hallo leute....ich würde gerne wissen ob ich meine diskussion richtig gemacht habe....ob mir das einer vielleicht kontollieren kann...und vielleicht bei einigen schwierigkeiten helfen könnte...
also...
1.) Symmetrie: also ich glaube das hier eine punktsymmetrie vorliegt, da
f(x)=-f(x) sein muss, d.h. x-1-lnx=-(x-1-lnx) und das stimmt...

2.)Definitionsbereich: [mm] D=\IR, [/mm] weil man ja alle zahlen einfügen kann oder?

3.)Verhalten gegen [mm] +/-\infty: [/mm]
bei diesem unterpunkt bin ich mir total unsciher, weil ich das nicht richtig kann...also...
wenn [mm] x\to+\infty [/mm] , dann geht [mm] f(x)\to+\infty [/mm]
und da hab ich ne frage...ich kann das irgendwie nicht gegen [mm] -\infty [/mm] machen....hier vllt ne kleine hilfe...

4.)Schnittstellen mit den Achsen:
x-achse: f(x)= x-1-lnx= 0  |+1
                       x   -lnx= 1  | e
                [mm] e^x [/mm] - e^lnx= [mm] e^1 [/mm]
                [mm] e^x [/mm] -        x= [mm] e^1 [/mm]            Wie krieg ich das x aus dem e??
ich komm hier irgendwie nicht weiter....

y-achse: f(0)= 0-1-ln0
                    = -1-ln0
                    = -1            oder??

5.)Extrema:
f(x)= x-1-lnx
f'(x)= 1- 1/x= 0           hoffe ich...stimmt das?
               x=1
f''(x)= [mm] -1/x^2 [/mm]           stimmt das?
f''(1)= [mm] -1/1^2= [/mm] -1
also Hochpunkt bei (1/0)

6.)Wendestellen:
f''(x)= [mm] -1/x^2= [/mm] 0                    und irgendwie geht das nicht...also keine wendestellen oder???

ich würde mich sehr freuen, wenn mir jemand helfen könnte!!danke

        
Bezug
komplette diskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 So 07.01.2007
Autor: M.Rex

Hallo

> Komplette Diskussion von f(x)= x-1-lnx
>  -Definitionsbereich
>  -Symmetrie
>  -Verhalten gegen +/- unendlich
>  -schnittstellen mit den achsen
>  -extrema
>  -wendestellen
>  hallo leute....ich würde gerne wissen ob ich meine
> diskussion richtig gemacht habe....ob mir das einer
> vielleicht kontollieren kann...und vielleicht bei einigen
> schwierigkeiten helfen könnte...
>  also...
>  1.) Symmetrie: also ich glaube das hier eine
> punktsymmetrie vorliegt, da
>  f(x)=-f(x) sein muss, d.h. x-1-lnx=-(x-1-lnx) und das
> stimmt...
>  
> 2.)Definitionsbereich: [mm]D=\IR,[/mm] weil man ja alle zahlen
> einfügen kann oder?


Nein, der Ln ist für [mm] x\le0 [/mm] nicht definiert, was auch die Symmetrie hinfällig macht.

>  
> 3.)Verhalten gegen [mm]+/-\infty:[/mm]
>  bei diesem unterpunkt bin ich mir total unsciher, weil ich
> das nicht richtig kann...also...
>   wenn [mm]x\to+\infty[/mm] , dann geht [mm]f(x)\to+\infty[/mm]
>  und da hab ich ne frage...ich kann das irgendwie nicht
> gegen [mm]-\infty[/mm] machen....hier vllt ne kleine hilfe...

Die Funktion ist auf [mm] \IR^{+} [/mm] definiert, also ist die Betrachtung gegen [mm] -\infty [/mm] nicht möglich.

>  
> 4.)Schnittstellen mit den Achsen:
>  x-achse: f(x)= x-1-lnx= 0  |+1
>                         x   -lnx= 1  | e
>                  [mm]e^x[/mm] - e^lnx= [mm]e^1[/mm]
>                  [mm]e^x[/mm] -        x= [mm]e^1[/mm]            Wie krieg
> ich das x aus dem e??
>  ich komm hier irgendwie nicht weiter....

Also:
x-1-ln(x)=0
[mm] \gdw [/mm] x-1=ln(x)
[mm] \gdw e^{x-1}=e^{ln(x)} [/mm]
[mm] \gdw e^{x-1}=x [/mm]
[mm] \gdw e^{x}*e^{-1}=x [/mm]
[mm] \gdw e^{x}=e*x [/mm]
Und das geht nur, wenn x=1

>  
> y-achse: f(0)= 0-1-ln0
>                      = -1-ln0
>                      = -1            oder??

Gibts nicht, da [mm] D=\\IR^{+}/\{0\} [/mm]

>  
> 5.)Extrema:
>  f(x)= x-1-lnx
>  f'(x)= 1- 1/x= 0           hoffe ich...stimmt das?

                 x=1

Korrekt

>  f''(x)= [mm]-1/x^2[/mm]           stimmt das?

Nicht ganz: [mm] f'(x)=1-x^{-1} [/mm]
Also [mm] f''(x)=-(-\bruch{1}{x²})=\bruch{1}{x²} [/mm]

>  f''(1)= [mm]-1/1^2=[/mm] -1
>  also Hochpunkt bei (1/0)

Damit [mm] f''(1)>0\Rightarrow [/mm] Tiefpunkt (1/0)

>  
> 6.)Wendestellen:
>  f''(x)= [mm]-1/x^2=[/mm] 0                    und irgendwie geht
> das nicht...also keine wendestellen oder???

Korrekt

>  
> ich würde mich sehr freuen, wenn mir jemand helfen
> könnte!!danke


Hier noch das Bild, []Funkyplot lässt grüssen.

[Dateianhang nicht öffentlich]

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]