komplexe Cauchy-Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] (a_n) [/mm] eine relle Folge mit [mm] \limes_{n\to\infty}a_n=A, [/mm] sei [mm] (b_n) [/mm] eine weitere reelle Folge und [mm] (z_n) [/mm] eine komplexe Folge mit [mm] z_n=a_n+i*b_n. [/mm] Beweisen Sie, ausgehend von der Definition einer Cauchy-Folge folgende Aussage:
[mm] z_n [/mm] eine Cauchy-Folge [mm] \gdw b_n [/mm] ist eine Cauchy-Folge. |
Hallo,
Die Definition einer Cauchy-Folge ist : [mm] \forall \epsilon>0 \exists N\in\IN \forall n,m\ge [/mm] N [mm] \Rightarrow |a_n-a_m|<\epsilon
[/mm]
also zuerst [mm] (\Rightarrow) [/mm] :
Für den betrag einer komplexen Zahl gilt [mm] |z|=\wurzel{x^2+y^2} \Rightarrow |z|\ge|y| [/mm] (*).
für [mm] z_n [/mm] gilt, wenn [mm] n,m\ge N_1 \Rightarrow |z_n-z_m|=|a_n-a_m+i*(b_n-b_m)|<\epsilon \Rightarrow |b_n-b_m|<\epsilon [/mm] (wegen (*)).
nun [mm] (\Leftarrow):
[/mm]
Sei [mm] b_n [/mm] eine Cauchy-Folge, es gilt also [mm] n\ge N_1 \Rightarrow |b_n-b_m|<\bruch{\epsilon}{2} [/mm] (**).
[mm] a_n [/mm] is konvergent, also gilt für [mm] n\ge N_2 \Rightarrow |a_n-A|<\bruch{\epsilon}{4}
[/mm]
für $ n,m [mm] \ge N_2 [/mm] $
[mm] |a_n-a_m|=|a_n-A+A-a_m|\le |a_n-A|+|a_m-A|<\bruch{\epsilon}{2} [/mm] (***)
Wählen wir nun [mm] n=max\{N_1,N_2\}, [/mm] dann ist
[mm] |z_n-z_m|=|a_n-a_m+b_n-b_m|\le |a_n-a_m|+|b_n+b_m|<\epsilon [/mm] wegen (**) und (***)
Wäre der Beweis so korrekt ?
Lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:01 So 25.04.2010 | Autor: | dormant |
Hi!
> Sei [mm](a_n)[/mm] eine relle Folge mit [mm]\limes_{n\to\infty}a_n=A,[/mm]
> sei [mm](b_n)[/mm] eine weitere reelle Folge und [mm](z_n)[/mm] eine komplexe
> Folge mit [mm]z_n=a_n+i*b_n.[/mm] Beweisen Sie, ausgehend von der
> Definition einer Cauchy-Folge folgende Aussage:
>
> [mm]z_n[/mm] eine Cauchy-Folge [mm]\gdw b_n[/mm] ist eine Cauchy-Folge.
> Hallo,
>
> Die Definition einer Cauchy-Folge ist : [mm]\forall \epsilon>0 \exists N\in\IN \forall n,m\ge[/mm]
> N [mm]\Rightarrow |a_n-a_m|<\epsilon[/mm]
>
> also zuerst [mm](\Rightarrow)[/mm] :
>
> Für den betrag einer komplexen Zahl gilt
> [mm]|z|=\wurzel{x^2+y^2} \Rightarrow |z|\ge|y|[/mm] (*).
> für [mm]z_n[/mm] gilt, wenn [mm]n,m\ge N_1 \Rightarrow |z_n-z_m|=|a_n-a_m+i*(b_n-b_m)|<\epsilon \Rightarrow |b_n-b_m|<\epsilon[/mm]
> (wegen (*)).
Sehr schön. Oder du machst eine Ungleichungskette, die direkt bei [mm] b_n-b_m [/mm] anfängt. Aber das ist auch klar genug.
> nun [mm](\Leftarrow):[/mm]
>
> Sei [mm]b_n[/mm] eine Cauchy-Folge, es gilt also [mm]n\ge N_1 \Rightarrow |b_n-b_m|<\bruch{\epsilon}{2}[/mm]
> (**).
>
> [mm]a_n[/mm] is konvergent, also gilt für [mm]n\ge N_2 \Rightarrow |a_n-A|<\bruch{\epsilon}{4}[/mm]
>
> für [mm]n,m \ge N_2[/mm]
>
> [mm]|a_n-a_m|=|a_n-A+A-a_m|\le |a_n-A|+|a_m-A|<\bruch{\epsilon}{2}[/mm]
> (***)
>
> Wählen wir nun [mm]n=max\{N_1,N_2\},[/mm] dann ist
>
> [mm]|z_n-z_m|=|a_n-a_m+b_n-b_m|\le |a_n-a_m|+|b_n+b_m|<\epsilon[/mm]
> wegen (**) und (***)
Diese Zeiel und [mm] a_n [/mm] (da in [mm] \IR [/mm] konvergent), [mm] b_n [/mm] C-Folge reicht schon aus. Sonst aber auch korrekt.
> Wäre der Beweis so korrekt ?
>
> Lg
>
>
>
>
Grüße,
dormant
|
|
|
|