www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysiskomplexe Differenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - komplexe Differenzierbarkeit
komplexe Differenzierbarkeit < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Differenzierbarkeit: Differenzenquotienten
Status: (Frage) beantwortet Status 
Datum: 13:53 So 11.12.2011
Autor: Anfaenger101

Aufgabe
An welchen Stellen sind die folgenden Funktionen komplex differenzierbar? Begründen Sie jeweils über die Cauchy-Riemann-Differentialgleichungen als auch über den Differenzenquotienten.

i) f(z) := [mm] \overline{z}z^{2} [/mm]
ii) f(x+iy) := [mm] x^{3}-3xy^{2}+i(3x^{2}y-y^{3}) [/mm]

Hallo Leute,

die Argumentation über die Cauchy-Riemann-Differentialgleichungen hab ich geschafft und damit rausbekommen, dass die Funktion in i) nur in z=0 komplex differenzierbar ist, die Funktion in ii) hingegen ist auf ganz [mm] \IC [/mm] komplex differenzierbar.

Mich nervt jetzt allerdings, dass man dies nochmals zeigen muss und zwar mit der Definition über den Differenzenquotienten.

Bei i) habe ich: [mm] \bruch{f(z)-f(a)}{z-a} [/mm] = [mm] \bruch{\overline{z}z^{2}-\overline{a}a^{2}}{z-a} [/mm] = [mm] \bruch{z|z|^{2}-a|a|^{2}}{z-a} [/mm] wobei a [mm] \in \IC. [/mm] Jetzt müsste ich zeigen, dass dieser Bruch genau dann konvergiert (für z geht gegen a), wenn a=0 gilt, doch ich hab leider nicht den blassesten Dunst, wie ich das anstellen soll.

Bei ii) siehts auch nicht besser aus. Mit u(x,y) := [mm] x^{3}-3xy^{2} [/mm] und v(x,y) := [mm] 3x^{2}y-y^{3} [/mm] sieht man, dass u(x,y) = - v(x,y) gilt.
Setzt man dies alles in den Differenzenquotienten, so erhält man nur einen sehr unübersichtlichen Ausdruck, der mir nicht weiterhilft.

Wäre nett, wenn mir hier jemand die entscheidenden Hinweise geben könnte.

Viele Grüße

        
Bezug
komplexe Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 So 11.12.2011
Autor: Helbig


> An welchen Stellen sind die folgenden Funktionen komplex
> differenzierbar? Begründen Sie jeweils über die
> Cauchy-Riemann-Differentialgleichungen als auch über den
> Differenzenquotienten.
>  
> i) f(z) := [mm]\overline{z}z^{2}[/mm]
> Mich nervt jetzt allerdings, dass man dies nochmals zeigen
> muss und zwar mit der Definition über den
> Differenzenquotienten.
>
> Bei i) habe ich: [mm]\bruch{f(z)-f(a)}{z-a}[/mm] =
> [mm]\bruch{\overline{z}z^{2}-\overline{a}a^{2}}{z-a}[/mm] =
> [mm]\bruch{z|z|^{2}-a|a|^{2}}{z-a}[/mm] wobei a [mm]\in \IC.[/mm] Jetzt
> müsste ich zeigen, dass dieser Bruch genau dann
> konvergiert (für z geht gegen a), wenn a=0 gilt, doch ich
> hab leider nicht den blassesten Dunst, wie ich das
> anstellen soll.

Zeige zunächst, daß der Differenzenquotient für $a=0$ konvergiert.
Dies ist einfach.

Um zu zeigen, daß der Differenzenquotient für [mm] $a\ne [/mm] 0$ nicht konvergiert, gibst Du zwei Folgen komplexer Zahlen an, die beide gegen $a$ konvergieren, aber so, daß die Grenzwerte der Differenzenquotienten verschieden sind.

Versuche mal [mm] $z_n=a*(1+1/n)$ [/mm] und [mm] $z_n=a*(1-1/n)$. [/mm]

Reicht das schon mal?

Grüße,
Wolfgang

Bezug
                
Bezug
komplexe Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 So 11.12.2011
Autor: Anfaenger101

Hallo Wolfgang,

vielen Dank für deine Antwort!
Die Idee, wie man jetzt zeigen soll, dass der Limes des Differenzenquotienten für a ungleich null nicht existiert ist mir klar.

Ich hab das jetzt mal mit den beiden Folgen, welche du vorgeschlagen hast, gemacht. Allerdings bekomme ich da bei beiden Grenzwerten der Differenzenquotienten dasselbe raus (nämlich null).

Habe ich mich hier verrechnet, oder muss ich noch eine andere Folge [mm] z_{n} [/mm] finden, welche für n gegen unendlich gegen a konvergiert?

Liebe Grüße

Bezug
                        
Bezug
komplexe Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 So 11.12.2011
Autor: Helbig


> vorgeschlagen hast, gemacht. Allerdings bekomme ich da bei
> beiden Grenzwerten der Differenzenquotienten dasselbe raus
> (nämlich null).
>  
> Habe ich mich hier verrechnet, oder muss ich noch eine
> andere Folge [mm]z_{n}[/mm] finden, welche für n gegen unendlich
> gegen a konvergiert?

Ich hab' nochmal nachgerechnet und erhalte [mm] $3*|a|^2$ [/mm] und [mm] $-3*|a|^2$. [/mm]
Rechne doch auch noch mal nach.

Gruß,
Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]