www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe Zahlenkomplexe ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "komplexe Zahlen" - komplexe ungleichung
komplexe ungleichung < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 So 07.02.2010
Autor: johnyan

Aufgabe
Finden Sie alle komplexen Zahlen z; welche die Ungleichung

[mm] \left|\bruch{2iz+4}{(1+i)z}\right|^2 \le [/mm] 2

erfüllen. Skizzieren Sie die erhaltene Lösungsmenge in der Gaußschen Zahle-
nebene.

ich habe erstmal versucht über z=x+iy, alles einsetzen und dann nach imaginärteil und realteil zu sortieren, aber dann würde die rechnung immer länger und ich bekam sehr lange terme, und am ende kam meiner meinung nach auch nichts vernünfiges raus.

[mm] \bruch{2x^2+4x+4y^2-4y}{2x^2+2y^2} [/mm] war dann der realteil
[mm] \bruch{2x^2-4x-4y}{2x^2+2y^2} [/mm] war der imaginärteil

und an der stelle dachte ich, dass man ganz anders an die aufgabe gehen müsste, kann mir ein helfen?

        
Bezug
komplexe ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Mo 08.02.2010
Autor: fred97

Es ist    $|2iz+4| = |2i(z-2i)| = 2|z-2i|$ und $|(1+i)z| = [mm] \wurzel{2}|z|$ [/mm]

Somit:

$ [mm] \left|\bruch{2iz+4}{(1+i)z}\right|^2 \le [/mm] 2 [mm] \gdw [/mm] |z-2i|=|z| $

So das sieht doch schon mal etwas freundlicher aus.

Wegen $|z-2i|=|z| [mm] \gdw [/mm] |z-2i|=|z-0| $ sind also alle Punkte z gesucht, die zum Punkt 2i den gleichen Abstand haben wie zum Punkt 0. Zeichne diese Punkte mal



Edit: es muß natürlich  

$ [mm] \left|\bruch{2iz+4}{(1+i)z}\right|^2 \le [/mm] 2 [mm] \gdw |z-2i|\le|z| [/mm] $ lauten



FRED

Bezug
                
Bezug
komplexe ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:19 Mo 08.02.2010
Autor: johnyan

sind alle z also auf der gerade, die durch i geht?

und diese umformung verstehe ich noch nicht ganz
$ [mm] \left|\bruch{2iz+4}{(1+i)z}\right|^2 \le [/mm] 2 [mm] \gdw [/mm] |z-2i|=|z| $
bitte noch um erklärung


Bezug
                        
Bezug
komplexe ungleichung: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 13:25 Mo 08.02.2010
Autor: Roadrunner

Hallo johnyan!


[ok] Genau ...


Gruß vom
Roadrunner


Bezug
                        
Bezug
komplexe ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Mo 08.02.2010
Autor: fred97


> sind alle z also auf der gerade, die durch i geht?

           ...............und parallel zur reelen Achse ist...............



>  
> und diese umformung verstehe ich noch nicht ganz
>  [mm]\left|\bruch{2iz+4}{(1+i)z}\right|^2 \le 2 \gdw |z-2i|=|z|[/mm]
>  
> bitte noch um erklärung


Hatee ich Dir doch schon gesagt: $ |2iz+4| = |2i(z-2i)| = 2|z-2i| $ und $ |(1+i)z| = [mm] \wurzel{2}|z| [/mm] $

FRED

>  


Bezug
                                
Bezug
komplexe ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Mo 08.02.2010
Autor: johnyan

ja, das mit parallel hab ich vergessen zu schreiben

also meine frage ist eher, ob das nicht
$ [mm] \left|\bruch{2iz+4}{(1+i)z}\right|^2 \le [/mm] 2 [mm] \gdw [/mm] |z-2i| [mm] \le [/mm] |z| $
also der abstand zu 2i kleiner gleich dem abstand zu 0,
heißen soll.


Bezug
                                        
Bezug
komplexe ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Mo 08.02.2010
Autor: schachuzipus

Hallo John,

> ja, das mit parallel hab ich vergessen zu schreiben
>  
> also meine frage ist eher, ob das nicht
> [mm]\left|\bruch{2iz+4}{(1+i)z}\right|^2 \le 2 \gdw |z-2i| \le |z|[/mm]
> also der abstand zu 2i kleiner gleich dem abstand zu 0,
>  heißen soll.

Ja, da hast du recht.

Nichtsdestotrotz ist Freds Umformung mehr als hilfreich:

Setze nun $z=x+iy$ ein und löse die Ungleichung [mm] $|z-2i|\le|z|$ [/mm] auf ...

Gruß

schachuzipus

>  


Bezug
                                                
Bezug
komplexe ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:39 Mo 08.02.2010
Autor: johnyan

gut, die lösung ist ja dann nicht mehr schwer, y [mm] \ge [/mm] 1, also die ganze fläche über der gerade, die durch i geht und parallel zur reellen achse ist.

vielen dank an euch alle!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]