www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrakomplexe zahlen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - komplexe zahlen
komplexe zahlen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe zahlen: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:44 So 14.11.2004
Autor: gerfur1

Weiß vielleicht die Lösung und den Lösungsweg der Aufgabe:

Für die Folgenden Ausdrücke ist die Polarform [mm] RE^{ifi} [/mm] anzugeben

[mm] (1+i)^{m}+(1-i)^{m} [/mm]

[mm] (1+i)^{m}-(1-i)^{m} [/mm]

[mm] \summe_{i=1}^{n} r^{n}*e^{i*n* \nu} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
komplexe zahlen: Hinweise
Status: (Antwort) fertig Status 
Datum: 09:39 Mo 15.11.2004
Autor: Gnometech

Gruß!

Generell gilt: Ausdrücke in Polarform kann man leichter multiplizieren (und damit potenzieren), während bei Ausdrücken, die in Real- und Imaginärteil ausgedrückt sind, das addieren und subtrahieren leichter fällt.

Versuche also mal, entsprechend umzurechnen - das sollst Du scheinbar üben. ;-)

Also gib $(1 + i)$ in Polarkoordinaten an - dann kannst das leicht mit $m$ potenzieren. Das rechnest dann wieder zurück für die Addition und das Ergebnis wieder zurück.

Mag sein, dass es einen einfacheren Weg gibt - aber diese Möglichkeit übt den Umrechnungsprozeß in beide Richtungen. :-)

Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]