www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenkongruenzrelation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - kongruenzrelation
kongruenzrelation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kongruenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 So 28.03.2010
Autor: s-jojo

Hey :)

zu den Kongruenzrelationen wurde eine Bemerkung geschrieben:

V K-Vektorraum, dann gilt:
Sei [mm] \equiv [/mm] eine K.-relation auf [mm] V\Rightarrow W:\{=v\in V|v\equiv 0\le V\} [/mm] und [mm] v\equiv w\Rightarrow v-w\in [/mm] W

1. Was soll mir diese 0 sagen? wenn v äquivalent zur 0 ist, heißt das nicht, dass v=0 ist? (bestimmt ist meine Vermutung wieder falsch...)

2. dazu gabs noch ein Beispiel:
[mm] V=K^2, W=K*(0,1)\Rightarrow v\equiv [/mm] w [mm] :\gdw v-w\in [/mm] W Kongruenzrelation
--> das hab ich überhaupt nicht verstanden :(


Gruß,
s-jojo

        
Bezug
kongruenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:32 Mo 29.03.2010
Autor: angela.h.b.


> Hey :)
>  
> zu den Kongruenzrelationen wurde eine Bemerkung
> geschrieben:
>  
> V K-Vektorraum, dann gilt:
>  Sei [mm]\equiv[/mm] eine K.-relation auf [mm]V\Rightarrow W:\{=v\in V|v\equiv 0\le V\}[/mm]
> und [mm]v\equiv w\Rightarrow v-w\in[/mm] W

Hallo,

bevor wir uns Deinen Fragen zuwenden, müßtest Du die Bemerkung erstmal so aufschreiben, wie sie an der Tafel stand...

Klar, ich könnte erraten, wie das richtig heißen soll - es geht mir darum, daß Du für Dich durchs richtige Aufschreiben überhaupt erstmal die Voraussetzungen fürs einen gewissen Durchblick schaffst.
Nur wenn's richtig dasteht, kann man den Inhalt des Satzes erfassen.

Nächstes:
wenn wir über Kongruenzrelation reden wollen, brauchen wir die Definition von Kongruenzrelation.
Sie lautet?



> 1. Was soll mir diese 0 sagen? wenn v äquivalent zur 0
> ist, heißt das nicht, dass v=0 ist? (bestimmt ist meine
> Vermutung wieder falsch...)

[mm] v\equiv [/mm] 0 ist etwas anderes als v=0.
Aus v=0 folgt zwar [mm] v\equiv [/mm] 0, das Umgekehrte gilt nicht.

Sicher hattet Ihr die Restklassen modulo 3.
Die Äquivalenzrelation ist hier:  [mm] a\sim [/mm] b [mm] \gdw [/mm]  a-b hat bei der Division durch 3 den Rest 0.

Du siehst schnell, daß zu 0 sehr viele Zahlen äquivalent sind, nämlich alle Vielfachen von 3.


> 2. dazu gabs noch ein Beispiel:
>  [mm]V=K^2, W=K*(0,1)\Rightarrow v\equiv[/mm] w [mm]:\gdw v-w\in[/mm] W
> Kongruenzrelation
>  --> das hab ich überhaupt nicht verstanden :(

Wir betrachten hier den Vektorraum [mm] K^2 [/mm] und seinen Unterraum W, welcher von [mm] \vektor{0\\1} [/mm] erzeugt wird, also alle Vielfachen dieses Vektors enthält, dh. [mm] W=\{k*\vektor{0\\1}| k\in K\}. [/mm]

Nun wird auf V eine Relation [mm] \equiv [/mm] erklärt durch

[mm] v\equiv [/mm] w :gdw [mm] v-w\in [/mm] W.

Die Behauptung ist, daß [mm] \equiv [/mm] eine Konguenzrelation auf V ist.

Um dies nun zu verstehen bzw. zu zeigen, muß man wissen, was eine Kongruenzrelation ist, und dies Punkt für Punkt prüfen.

Gruß v. Angela

>  
>
> Gruß,
>  s-jojo


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]