www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenkonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - konvergenz
konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz: tipp
Status: (Frage) beantwortet Status 
Datum: 14:16 Sa 21.11.2009
Autor: sepp-sepp

Aufgabe
untersuchen sie folgende folge auf konvergenz, und berechnen sie ggf. den grenzwert der folge: [mm] c_{n}= \vektor{n \\ k}*n^{-k} [/mm] mit festem k [mm] \in \IN [/mm]

wie kann ich da am besten den grenzwert / konvergenz bestimmen? gibts da eine vorgehensweise?

        
Bezug
konvergenz: Binomialkoeffizient
Status: (Antwort) fertig Status 
Datum: 14:18 Sa 21.11.2009
Autor: Loddar

Hallo sepp-sepp!


Schreibe den Binomialkoeffizienten ausführlich hin und fasse zusammen.


Gruß
Loddar




Bezug
                
Bezug
konvergenz: rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:28 Sa 21.11.2009
Autor: sepp-sepp

hab ich schon gemacht aber was will ich da großartig zusammenfassen?
[mm] \bruch{n!}{k!(n-k)!n^{k}} [/mm]

Bezug
                        
Bezug
konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Sa 21.11.2009
Autor: reverend

Hallo sepp-sepp,

Du könntest vielleicht besser [mm] \bruch{a_{n+1}}{a_n} [/mm] ausschreiben und mal schauen, ob das für [mm] n\to\infty [/mm] gegen 1 geht.

lg
reverend

Bezug
                                
Bezug
konvergenz: rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:29 Sa 21.11.2009
Autor: sepp-sepp

dann bekäme ich das, wenn ich mich nicht verrechnet hab:
[mm] \bruch{n^{k}}{(n+1-k)(n+1)^{k-1}} [/mm] aber bringt mich das weiter? v.a. hab ich ja dann nicht den grenzwert der folge [mm] c_{n}, [/mm] sondern den dieses bruches!?

Bezug
                                        
Bezug
konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Sa 21.11.2009
Autor: reverend


> dann bekäme ich das, wenn ich mich nicht verrechnet hab:
>  [mm]\bruch{n^{k}}{(n+1-k)(n+1)^{k-1}}[/mm] aber bringt mich das
> weiter? v.a. hab ich ja dann nicht den grenzwert der folge
> [mm]c_{n},[/mm] sondern den dieses bruches!?

Stimmt, den Grenzwert hast Du damit noch nicht, aber einen Nachweis für Konvergenz kannst Du führen. Wenn Du einen Kürzungsvorgang weniger ausführst, hast Du folgenden Bruch:

[mm]\bruch{n+1}{n-k+1}*\bruch{n^k}{(n+1)^k}[/mm], und der geht bei festem k für [mm] n\to\infty [/mm] sicher gegen 1. Die Folge ist also schonmal konvergent.

Für die Bestimmung des Grenzwertes brauchst Du nahezu einen Vergleich mit einer Dir schon bekannten Folge, die gegen e konvergiert.

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]