www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenkonvergenz von reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - konvergenz von reihen
konvergenz von reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz von reihen: Frage
Status: (Frage) beantwortet Status 
Datum: 14:20 Mi 24.11.2004
Autor: tapsi

ich benötige ganz dringend eure hilfe, kann mir jemand bitte mit dieser aufgabe weiter helfen:

untersuchen sie die reihe auf konvergenz oder divergenz

[mm] \summe_{n=2}^{ \infty} [/mm]  ((1/( [mm] \wurzel{n}-1))+(1/( \wurzel{n}+1))) [/mm]

bitte helft mir

        
Bezug
konvergenz von reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 Mi 24.11.2004
Autor: FriedrichLaher

das ist im wesentlichem eine Majorante zu 1/n

Bezug
        
Bezug
konvergenz von reihen: Antwort
Status: (Antwort) fehlerhaft Status 
Datum: 15:25 Mi 24.11.2004
Autor: Antiprofi

Man kann doch auch das Wurzelkriterium nehmen und zeigen das der lim sup von [mm] (a_{n})^{1/n} [/mm] 0 ist. Dann ist 0 < 1 und somit konvergent.

Bezug
                
Bezug
konvergenz von reihen: Antwort+Korrektur zu Antiprofi
Status: (Antwort) fertig Status 
Datum: 19:34 Mi 24.11.2004
Autor: Marcel

Hallo,

es gilt mit [mm] $a_n=\frac{1}{\wurzel{n}-1}+\frac{1}{\wurzel{n}+1}$: [/mm]

[mm] $(\star)$[/mm]  [m]a_n=|a_n|=\frac{1}{\wurzel{n}-1}+\frac{1}{\wurzel{n}+1} =2*\frac{\wurzel{n}}{n-1}[/m] [mm] $\forall [/mm] n [mm] \in \IN$, [/mm] $n [mm] \ge [/mm] 2$.

Damit wird [m]\limsup_{n \to \infty}{\wurzel[n]{|a_n|}}=\liminf_{n \to \infty}{\wurzel[n]{|a_n|}}=\lim_{n \to \infty}{\wurzel[n]{|a_n|}}=1[/m] sein und mit dem Wurzelkriterium keine Aussage möglich sein.

Aber es geht folgendes:
Es gilt für jedes $k [mm] \in \IN$, [/mm] $k [mm] \ge [/mm] 2$:

[m]\summe_{n=2}^k{\left(\frac{1}{\wurzel{n}-1}+\frac{1}{\wurzel{n}+1}\right)}[/m]

[m]\stackrel{(\star)}{=}2*\summe_{n=2}^k{\frac{\wurzel{n}}{n-1}}[/m]

[m]=2*\summe_{n=2}^k{\frac{1}{\wurzel{n}-\frac{1}{\wurzel{n}}}}[/m]

[m]\ge 2*\summe_{n=2}^k{\frac{1}{\wurzel{n}}}[/m]

[m]\ge \summe_{n=2}^k{\frac{1}{\wurzel{n}}}[/m]

[m]\ge \summe_{n=2}^k{\frac{1}{n}}[/m]

und daher:
[m]\summe_{n=2}^\infty{\left(\frac{1}{\wurzel{n}-1}+\frac{1}{\wurzel{n}+1}\right)} =\lim_{k \to \infty}{\summe_{n=2}^k{\left(\frac{1}{\wurzel{n}-1}+\frac{1}{\wurzel{n}+1}\right)}}\ge \underbrace{\summe_{n=2}^\infty{\frac{1}{n}}}_{bestimmt\;divergent\;gegen\;\infty}[/m]

Also ist auch:
[m]\summe_{n=2}^\infty{\left(\frac{1}{\wurzel{n}-1}+\frac{1}{\wurzel{n}+1}\right)}[/m] bestimmt divergent gegen [mm] $\infty$ [/mm] (man sagt auch: konvergent gegen [m]\infty[/m]).

Viele Grüße,
Marcel

Bezug
                        
Bezug
konvergenz von reihen: Frage
Status: (Frage) beantwortet Status 
Datum: 21:21 Mi 24.11.2004
Autor: sunshinenight

Nach welchem Kriterium gehst du denn dabei vor?
Ich hätte gedacht, dass die Reihe konvergent ist....

mfg

Bezug
                                
Bezug
konvergenz von reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Mi 24.11.2004
Autor: Marcel

Hallo Sunshinenight,

da ich eine divergente Minorante gefunden habe, kann die Reihe nach dem Majorantenkriterium nicht konvergieren.
(Denn: Würde die Reihe [m]\summe_{n=2}^\infty{\left(\frac{1}{\wurzel{n}-1}+\frac{1}{\wurzel{n}+1}\right)}[/m] konvergieren, so wäre sie eine konvergente Majorante für die Reihe [m]\summe_{n=2}^\infty\frac{1}{n}[/m] und damit müßte auch [m]\summe_{n=2}^\infty\frac{1}{n}[/m] konvergent sein. Die Reihe [m]\summe_{n=2}^\infty\frac{1}{n}[/m] ist aber bestimmt divergent gegen [mm] $\infty$.) [/mm]
Die Abschätzungen, die ich gemacht habe, sind alle ziemlich banal. Verstehst du eine davon nicht?

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]