www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenkonvergiert die Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - konvergiert die Reihe
konvergiert die Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergiert die Reihe: Partialsummen?
Status: (Frage) beantwortet Status 
Datum: 14:05 Mi 11.06.2008
Autor: MissRHCP

Aufgabe
konvergiert die Reihe [mm] \summe_{i=1}^{\infty}\bruch{1}{k(k+1)(k+2)}? [/mm]

Ich habe das ganze mal in Partialsummen zerlegt:

[mm] \bruch{1}{k(k+1)(k+2)} [/mm] = [mm] \bruch{1}{k} [/mm] - [mm] \bruch{1}{k+1} [/mm] - [mm] \bruch{1}{k(k+2)} [/mm]

nach Definition konvergiert/divergiert eine Reihe, falls die Folge der Partialsummen konvergiert/divergiert.
Meine Frage:
Was genau mache ich jetzt mit meinen Partialsummen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
konvergiert die Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Mi 11.06.2008
Autor: Gonozal_IX

Hallo MissRHCP,

> [mm]\bruch{1}{k(k+1)(k+2)} = \bruch{1}{k} - \bruch{1}{k+1} - \bruch{1}{k(k+2)}[/mm]

[ok]

Nun gut, es gilt ja jetzt:

[mm]s_n = \summe_{k=1}^{n}\bruch{1}{k(k+1)(k+2)} = \summe_{k=1}^{n}\left(\bruch{1}{k} - \bruch{1}{k+1} - \bruch{1}{k(k+2)}\right)[/mm]

Berechne [mm] s_n [/mm] einfach mal :-)
Tip: Summe auseinanderziehen, mit Indexverschiebung fallen bei den vorderen Summen die meisten Teile weg, die hintere musst du natürlich wieder per Partialbruchzerlegung bestimmen. Ist aber alles nicht so schwer, nur ein bisschen Schreibarbeit.

Kontrollergebnis:

[mm]s_n = \bruch{1}{4} - \bruch{1}{2(n + 1)(n + 2)}[/mm]

MfG,
Gono.

Bezug
                
Bezug
konvergiert die Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 Mi 11.06.2008
Autor: MissRHCP

was ist denn Index-Verschiebung?

Bezug
                        
Bezug
konvergiert die Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Mi 11.06.2008
Autor: Gonozal_IX

Einfaches Beispiel:

[mm]\summe_{k=0}^{n}\bruch{1}{(k+1)} = \summe_{k=1}^{n+1}\bruch{1}{k}[/mm]

Also: Man erhöht den Anfangs- und Endlaufwert um 1 und senkt dafür die Laufvariable 1 ab.

Wie man leicht erkennt, sind die Summen identisch, allerdins könnte ich letztere jetzt von einer Summe mit [mm] \bruch{1}{k} [/mm] im Summanden abziehen, was bei der ersten nicht geht.

MfG,
Gono.

Bezug
                                
Bezug
konvergiert die Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:41 Mi 11.06.2008
Autor: MissRHCP

ok...Danke sehr...jetzt seh ich es

Bezug
                                        
Bezug
konvergiert die Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mi 11.06.2008
Autor: MissRHCP

Ich habe mich vorhin verrechnet, habe ich gerade gesehen...aber ich komme so absolut nichtweiter.
Bitte leih mir doch mal ds kleine MatheOrakel links neben deinem Rechner ;)
Mal im ernst. Ich brauch noch nen kleinen Tip. Ich muss nämlich bis 18:00Uhr fertig sein.
sry

Bezug
                                                
Bezug
konvergiert die Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Mi 11.06.2008
Autor: Gonozal_IX

Was fürn Tip?
Ich weiss ja nicht wo du hängst :-)
Schreib deinen Weg doch mal hier rein, dann kann man dir auch helfen......


Bezug
                                                        
Bezug
konvergiert die Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Mi 11.06.2008
Autor: MissRHCP

[mm] s_n=\summe_{k=1}^{n}\bruch{1}{k(k+1)(k+2)} [/mm]

[mm] =\summe_{k=1}^{n}\bruch{1}{k}-\bruch{1}{k+1}-\bruch{1}{k(k+2)} [/mm]

[mm] =\summe_{k=1}^{n}\bruch{1}{k}-\summe_{k=1}^{n}\bruch{1}{k+1}-\summe_{k=1}^{n}\bruch{1}{k(k+2)} [/mm]

[mm] =\summe_{k=0}^{n}\bruch{1}{k+1}-\summe_{k=1}^{n}-\summe_{k=1}^{n}\bruch{1}{k(k+2)} [/mm]

[mm] =1-\summe_{k=1}^{n}\bruch\bruch{1}{k(k+2)} [/mm]

und hier stecke ich fest ich finde keinen partialbruch/summe? für [mm] \bruch{1}{k(k+2)} [/mm]

Bezug
                                                                
Bezug
konvergiert die Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Mi 11.06.2008
Autor: leduart

Hallo
[mm] \bruch{1}{k*(k+2)}=\bruch{a}{k}+\bruch{b}{k+2} [/mm]  daraus ak+2a+bk=1
d.h. 2a=1; a+b=0  so findet man immer ne partialbruchzerlegung.

übrigens, du hast in deiner Summe das n+1 te glied beim subtrahieren vergessen!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]