www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigeskonvexe Hülle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - konvexe Hülle
konvexe Hülle < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvexe Hülle: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:09 Di 07.07.2009
Autor: chrissi2709

Aufgabe
Im [mm] \IR^n [/mm] seien [mm] e_0 [/mm] := 0 und [mm] e_i, [/mm] i = 1,...,n die Koordinatenvektoren. Zeige: x = [mm] (x_i)_{i=1,...,n} [/mm] liegt genau dann in der konvexen Hülle [mm] conv(e_0, e_1,..., e_n), [/mm] wenn
[mm] x_i \ge [/mm] 0 für i = 1,...,n und [mm] x_1 [/mm] + ... + [mm] x_n \le [/mm] 1

Hallo an alle!

also ich hab da schon mal was gemacht, bin mir aber nicht sicher, ob ich das so machen kann bzw darf.

genau dann heißt ja hin- und rückrichtung.

"=>" ( hier zeige ich die Bedingung für Konvexkombination, um auf konvexe Hülle schließen zu können)
[mm] x_1 [/mm] + ... + [mm] x_n \le [/mm] 1
kann ich denn zu diesem Zeitpunkt sagen, dass ich aus
[mm] x_1*e_1 [/mm] + ... [mm] x_n*e_n \in \IR^n [/mm]
eine Affinkombination machen kann?
falls nicht, wie mache ich das dann?
und mit der bedingung [mm] x_i \ge [/mm] 0 für i = 1,...,n
=> Konvexkombination
=>(aus Def. 6.8(= Menge aller endlichen Konvexkombinationen heißt konvexe Hülle))  x = [mm] (x_i)_{i=1,...,n} [/mm] liegt in der konvexen Hülle [mm] conv(e_0, e_1,..., e_n). [/mm]

"<="
x = [mm] (x_i)_{i=1,...,n} [/mm] liegt in konvexer Hülle

(aus Def. 6.8 & 6.7 (= Affinkombination [mm] t_1y_1 [/mm] + ... + [mm] t_ly_l \in \IR^n, t_1 [/mm] + ... + [mm] t_l [/mm] = 1 heißt Konvexkombination, wenn [mm] t_i \ge [/mm] 0 für i = 1,...,l))
=> [mm] x_1e_1 [/mm] + ... + [mm] x_ie_i \in \IR [/mm] , [mm] x_1 [/mm] + ... + [mm] x_i \le [/mm] 1
und [mm] x_i \ge [/mm] 0 für i = 1,...,n                                              q.e.d

ist mein beweis so richtig? oder kann ich das so nicht machen?

vielen Dank schonmal für die Antworten

lg

chrissi


        
Bezug
konvexe Hülle: Antwort
Status: (Antwort) fertig Status 
Datum: 09:39 Mi 08.07.2009
Autor: fred97

Dein Beweis ist ein großes Durcheinander !

1. Sei x [mm] \in [/mm] $ [mm] conv(e_0, e_1,..., e_n), [/mm] $. Dann ex. [mm] t_0, [/mm] ..., [mm] t_n \ge [/mm] 0 mit

             [mm] t_0+t_1+ ...+t_n [/mm] = 1 und x = [mm] t_0e_0+ ,,,+t_ne_n [/mm]

Dann ist aber [mm] x_i [/mm] = [mm] t_i [/mm] für i =1, ..., n , also

                        [mm] x_1+ ,,,+x_n \le t_0+t_1+ ...+t_n [/mm] = 1


2. Es gelte [mm] x_1+ ,,,+x_n \le [/mm] 1 und [mm] x_i \ge [/mm] 0 (i = 1, ...,n)

Wähle [mm] x_0 \ge [/mm] 0 so, dass [mm] x_0+x_1+ ,,,+x_n [/mm] = 1.

Wegen x = [mm] x_0e_0+x_1e_1+...+x_ne_n, [/mm] ist dann x [mm] \in [/mm] $ [mm] conv(e_0, e_1,..., e_n), [/mm] $


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]