www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrakonvexe Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - konvexe Menge
konvexe Menge < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvexe Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Mi 09.11.2005
Autor: gymnozist

Hallo, ich mal wieder.
Habe hier diese Aufgabe.
Eine abgeschlossene Menge C aus dem [mm] R^n [/mm] ist genau dann konvex, wenn mit ihren Punkten x und y auch deren Konvexkombination mit Konvexkoeffizienten [mm] a=(\bruch{2}{3} [/mm] und [mm] \bruch{1}{3}) [/mm] aus dem zweidimensionalen Einheitssimplex enthällt, also wenn gilt: z(a)= [mm] (\bruch{2}{3}*x+\bruch{1}{3}*y) [/mm]
Das dem so ist ist mir klar, denn ich habe in der vorlesung gelernt, dass eine Menge nur dann konvex ist, wenn deren Konvexkombinationen alle drinliegen. Aber wie zeige ich das und was hat die abgeschlossenheit damit zu tun?
Danke, wenn mir jemand weiterhilft.

        
Bezug
konvexe Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Do 10.11.2005
Autor: Toellner

Hallo,

normalerweise muss für die Konvexität gelten, dass mit x und y alle tx + (1-t)y für alle t [mm] \in [/mm] [0;1] drinliegen: das ist die Verbindungsstrecke.
Hier hast Du aber nur eine(!) Möglichkeit, nämlich t = 1/3.
Dann musst Du nach dem Prinzip des Intervallhalbierungsverfahrens (hier: Drittelungsverfahren) eine dichte Teilmenge der Verbindungsstrecke von x nach y konstruieren: die Abgeschlossenheit liefert Dir dann den Rest.

Gruß, Richard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]