konvexe Menge < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:52 Do 04.11.2010 | Autor: | Kayle |
Aufgabe | Seien [mm] x_1,...,x_k \in \IR^{N}, X:=\{x_1,...,x_k\}. [/mm] Für
[mm] \mathcal{M} [/mm] = [mm] \{M \subset \IR^{N} | X \subset M, M konvex\}
[/mm]
zeige man
[mm] M^{\*} [/mm] := [mm] \bigcap_{\mathcal{M}}M [/mm] = [mm] \{\summe_{i=1}^{k} \alpha_ix_i | 0 \le \alpha_i \le 1, \summe_{i=1}^{k} \alpha_i = 1\}. [/mm] |
Hallo,
also ich hab erstmal geschaut wie eine Menge M als konvex definiert haben:
M [mm] \subset \IR^N [/mm] konvex, gdw [mm] \forall [/mm] x,y [mm] \in [/mm] M, [mm] \alpha \in [/mm] [0,1]: [mm] \alpha*x+(1-\alpha)y \in [/mm] M.
Dann weiß ich ja auch, dass [mm] M^{\*} [/mm] die kleinste konvexe Menge ist, die [mm] x_1,...,x_k [/mm] enthält. Aber leider hört es damit schon auf.
Ich hab leider keine Ahnung, wie ich den Beweis hier führen könnte. Könnte mir eventuell Jemand dabei weiterhelfen?
Gruß
Kayle
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:55 Do 04.11.2010 | Autor: | felixf |
Moin Kayle,
> Seien [mm]x_1,...,x_k \in \IR^{N}, X:=\{x_1,...,x_k\}.[/mm] Für
>
> [mm]\mathcal{M}[/mm] = [mm]\{M \subset \IR^{N} | X \subset M, M konvex\}[/mm]
>
> zeige man
>
> [mm]M^{\*}[/mm] := [mm]\bigcap_{\mathcal{M}}M[/mm] = [mm]\{\summe_{i=1}^{k} \alpha_ix_i | 0 \le \alpha_i \le 1, \summe_{i=1}^{k} \alpha_i = 1\}.[/mm]
Sollte das nicht eher [mm] $X^\ast$ [/mm] heissen als [mm] $M^\ast$?
[/mm]
Nennen wir die Menge auf der rechten Seite mal $X'$, damit sie auch einen Namen hat. Du musst also zeigen [mm] $X^\ast [/mm] = X'$.
> also ich hab erstmal geschaut wie eine Menge M als konvex
> definiert haben:
>
> M [mm]\subset \IR^N[/mm] konvex, gdw [mm]\forall[/mm] x,y [mm]\in[/mm] M, [mm]\alpha \in[/mm]
> [0,1]: [mm]\alpha*x+(1-\alpha)y \in[/mm] M.
>
> Dann weiß ich ja auch, dass [mm]M^{\*}[/mm] die kleinste konvexe
> Menge ist, die [mm]x_1,...,x_k[/mm] enthält. Aber leider hört es
> damit schon auf.
>
> Ich hab leider keine Ahnung, wie ich den Beweis hier
> führen könnte. Könnte mir eventuell Jemand dabei
> weiterhelfen?
Du musst zwei Richtungen zeigen:
* $X' [mm] \subseteq X^\ast$;
[/mm]
* [mm] $X^\ast \subseteq [/mm] X'$.
Zur Richtung $X' [mm] \subseteq X^\ast$. [/mm] Dazu musst du zeigen: ist $M$ irgendeine konvexe Menge mit $X [mm] \subseteq [/mm] M$, so gilt $X' [mm] \subseteq [/mm] M$. Daraus folgt: $X' [mm] \subseteq \bigcap \mathcal{M} [/mm] = [mm] X^\ast$.
[/mm]
Um das konkret anzugehen: nimm dir ein Element $x = [mm] \sum_{i=1}^n \alpha_i x_i \in [/mm] X'$ mit $0 [mm] \le \alpha_i \le [/mm] 1$, [mm] $\sum_{i=1}^n \alpha_i [/mm] = 1$. Du musst jetzt zeigen, dass $x [mm] \in [/mm] M$ ist.
Schreib doch mal $x = [mm] \alpha_n x_n [/mm] + (1 - [mm] \alpha_n) \sum_{i=1}^{n-1} \frac{\alpha_i}{1 - \alpha_n} x_i$. [/mm] Wenn du zeigen kannst, dass [mm] $\sum_{i=1}^{n-1} \frac{\alpha_i}{1 - \alpha_n} x_i \in [/mm] M$ ist, dann folgt auch $x [mm] \in [/mm] M$ da $M$ konvex ist. Pack das mal per Induktion an.
Zur Richtung [mm] $X^\ast \subseteq [/mm] X'$. Dazu musst du zeigen: $X'$ ist eine konvexe Menge, die $X$ umfasst. Daraus folgt, dass $X' [mm] \in \mathcal{M}$ [/mm] ist und somit [mm] $X^\ast [/mm] = [mm] \bigcap \mathcal{M} \subseteq [/mm] X'$ ist.
Dazu nimmst du dir $x = [mm] \sum \alpha_i x_i, [/mm] y = [mm] \sum \beta_i x_i \in [/mm] X'$ und [mm] $\alpha \in [/mm] [0, 1]$ und zeigst, dass [mm] $\alpha [/mm] x + (1 - [mm] \alpha) [/mm] y [mm] \in [/mm] X'$ liegt.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:16 Do 04.11.2010 | Autor: | Kayle |
> Moin Kayle,
>
> > Seien [mm]x_1,...,x_k \in \IR^{N}, X:=\{x_1,...,x_k\}.[/mm] Für
> >
> > [mm]\mathcal{M}[/mm] = [mm]\{M \subset \IR^{N} | X \subset M, M konvex\}[/mm]
>
> >
> > zeige man
> >
> > [mm]M^{\*}[/mm] := [mm]\bigcap_{\mathcal{M}}M[/mm] = [mm]\{\summe_{i=1}^{k} \alpha_ix_i | 0 \le \alpha_i \le 1, \summe_{i=1}^{k} \alpha_i = 1\}.[/mm]
>
> Sollte das nicht eher [mm]X^\ast[/mm] heissen als [mm]M^\ast[/mm]?
Mh, also die Aufgabenstellung ist wirklich eins zu eins wiedergegeben. Seit dem mir hier anfangs ein paar Tippfehler passiert sind, überprüf ich jetzt alles 10 mal ^^
> Nennen wir die Menge auf der rechten Seite mal [mm]X'[/mm], damit
> sie auch einen Namen hat. Du musst also zeigen [mm]X^\ast = X'[/mm].
>
> > also ich hab erstmal geschaut wie eine Menge M als konvex
> > definiert haben:
> >
> > M [mm]\subset \IR^N[/mm] konvex, gdw [mm]\forall[/mm] x,y [mm]\in[/mm] M, [mm]\alpha \in[/mm]
> > [0,1]: [mm]\alpha*x+(1-\alpha)y \in[/mm] M.
> >
> > Dann weiß ich ja auch, dass [mm]M^{\*}[/mm] die kleinste konvexe
> > Menge ist, die [mm]x_1,...,x_k[/mm] enthält. Aber leider hört es
> > damit schon auf.
> >
> > Ich hab leider keine Ahnung, wie ich den Beweis hier
> > führen könnte. Könnte mir eventuell Jemand dabei
> > weiterhelfen?
>
> Du musst zwei Richtungen zeigen:
> * [mm]X' \subseteq X^\ast[/mm];
> * [mm]X^\ast \subseteq X'[/mm].
>
> Zur Richtung [mm]X' \subseteq X^\ast[/mm]. Dazu musst du zeigen: ist
> [mm]M[/mm] irgendeine konvexe Menge mit [mm]X \subseteq M[/mm], so gilt [mm]X' \subseteq M[/mm].
> Daraus folgt: [mm]X' \subseteq \bigcap \mathcal{M} = X^\ast[/mm].
>
> Um das konkret anzugehen: nimm dir ein Element [mm]x = \sum_{i=1}^n \alpha_i x_i \in X'[/mm]
> mit [mm]0 \le \alpha_i \le 1[/mm], [mm]\sum_{i=1}^n \alpha_i = 1[/mm]. Du
> musst jetzt zeigen, dass [mm]x \in M[/mm] ist.
>
> Schreib doch mal [mm]x = \alpha_n x_n + (1 - \alpha_n) \sum_{i=1}^{n-1} \frac{\alpha_i}{1 - \alpha_n} x_i[/mm].
> Wenn du zeigen kannst, dass [mm]\sum_{i=1}^{n-1} \frac{\alpha_i}{1 - \alpha_n} x_i \in M[/mm]
> ist, dann folgt auch [mm]x \in M[/mm] da [mm]M[/mm] konvex ist. Pack das mal
> per Induktion an.
>
> Zur Richtung [mm]X^\ast \subseteq X'[/mm]. Dazu musst du zeigen: [mm]X'[/mm]
> ist eine konvexe Menge, die [mm]X[/mm] umfasst. Daraus folgt, dass
> [mm]X' \in \mathcal{M}[/mm] ist und somit [mm]X^\ast = \bigcap \mathcal{M} \subseteq X'[/mm]
> ist.
>
> Dazu nimmst du dir [mm]x = \sum \alpha_i x_i, y = \sum \beta_i x_i \in X'[/mm]
> und [mm]\alpha \in [0, 1][/mm] und zeigst, dass [mm]\alpha x + (1 - \alpha) y \in X'[/mm]
> liegt.
>
> LG Felix
>
Dankeschön Felix für die gute Erkläung, ich werds mal probieren.
Gruß
Kayle
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:25 Do 04.11.2010 | Autor: | felixf |
Moin!
> > Sollte das nicht eher [mm]X^\ast[/mm] heissen als [mm]M^\ast[/mm]?
>
> Mh, also die Aufgabenstellung ist wirklich eins zu eins
> wiedergegeben. Seit dem mir hier anfangs ein paar
> Tippfehler passiert sind, überprüf ich jetzt alles 10 mal
> ^^
Man kann's schon [mm] $M^\ast$ [/mm] nennen, aber ich finde [mm] $X^\ast$ [/mm] etwas logischer, weil man ja die konvexe Huelle von $X$ bildet und nicht von $M$...
> Dankeschön Felix für die gute Erkläung, ich werds mal
> probieren.
Viel Erfolg!
LG Felix
|
|
|
|