www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenOperations Researchkonvexes Optimierungsproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Operations Research" - konvexes Optimierungsproblem
konvexes Optimierungsproblem < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvexes Optimierungsproblem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 01:46 Di 04.05.2010
Autor: Katrin89

Aufgabe
Beweise oder widerlege folgende Aussage:
Es seinen f und [mm] g_1,...,g_m [/mm] konvex
min f(x), so dass [mm] g_i(x)>0 [/mm] ist ein konvexes Optimierungsproblem

Guten Abend,
leider habe ich hierzu noch gar keine Lösung, eher Ideen. Ich kann ja auch mal die Theorie dazu aufschreiben:
Ein konvexes Opt.problem der Form min f(x) x [mm] \in [/mm] A, wenn die Zielfunktion f konvex ist und die Menge aller zulässigen Punkte A eine konvexe Menge ist.
Außerdem gilt:
- Jedes lineare Funktional ist konvex.
- Das konvexe Opt.problem hat die Eigenschaft, dass jedes lokale Optimun auch ein globales ist.
- Lineare Programme sind spezielle konvexe Opt.probleme.

Ich weiß, dass die Aussage falsch ist, weil sie für [mm] g_i \le [/mm] 0 gelten muss. Aber ich komme mit der Begründung nicht klar bzw. man könnte ja auch ein Gegenbsp. finden.
Ich würde es so begründen:
Die Nebenbedingungen schränken meinen zulässigen Bereich ein und >0 schränkt nicht ein.


        
Bezug
konvexes Optimierungsproblem: Oder stimmt die Aussage doch?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:19 Di 04.05.2010
Autor: Katrin89

Ich bin mir grade gar nicht mehr sicher, ob die obige Aussage nicht doch stimmen kann... aber ich habe auch leider keine Begründung dafür.

Bezug
                
Bezug
konvexes Optimierungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 Di 04.05.2010
Autor: Katrin89

Hat jemand eine Idee? Komme hier absolut nicht weiter...

Bezug
        
Bezug
konvexes Optimierungsproblem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 Mi 12.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]