www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPrädikatenlogikkorrekte Quantifizierung?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Prädikatenlogik" - korrekte Quantifizierung?
korrekte Quantifizierung? < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

korrekte Quantifizierung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Fr 19.12.2008
Autor: rainman

Aufgabe
Eine Menge [mm]M[/mm] reeller Zahlen heißt nach unten beschränkt,
wenn es ein [mm]a \in \IR[/mm] gibt, sodass [mm]a \le x \text{ für alle } x \in M[/mm] gilt.

Ich möchte die Bedingung der obigen Aussage in Quantorenschreibweise "umschreiben", bin mir aber noch sehr unsicher. Ist das hier eine korrekte Form (mir ist aufgefallen, dass verschiedene Schreibweisen verwendet werden):

[mm]\forall x \in M \exists a \in \IR: a \leq x[/mm]

Es geht mir dabei weniger um die konkrete Aussage, als mehr um die "Übersetzung" in Quantorenschreibweise. Für Hinweise bin ich dankbar.

        
Bezug
korrekte Quantifizierung?: Reihenfolge wesentlich !
Status: (Antwort) fertig Status 
Datum: 15:27 Fr 19.12.2008
Autor: Al-Chwarizmi


> Eine Menge [mm]M[/mm] reeller Zahlen heißt nach unten beschränkt,
>  wenn es ein [mm]a \in \IR[/mm] gibt, sodass [mm]a \le x \text{ für alle } x \in M[/mm]
> gilt.
>  Ich möchte die Bedingung der obigen Aussage in
> Quantorenschreibweise "umschreiben", bin mir aber noch sehr
> unsicher. Ist das hier eine korrekte Form (mir ist
> aufgefallen, dass verschiedene Schreibweisen verwendet
> werden):
>  
>     [mm]\forall x \in M\ \ \exists a \in \IR: a \leq x[/mm]

Dies ist eine falsche "Übersetzung". Sie wäre für jede
beliebige
Teilmenge M von [mm] \IR [/mm] gültig.

Die Reihenfolge der Quantoren ist wichtig, und in
der angegebenen sprachlichen Formulierung ist
sie richtig. Korrekt muss es also heissen:

      [mm]\exists a \in \IR\ \ \forall x \in M : a \leq x[/mm]


LG



Bezug
                
Bezug
korrekte Quantifizierung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Fr 19.12.2008
Autor: rainman

Vielen Dank, das hatte ich übersehen und die Antwort hilft mir stark weiter.

Vielleicht noch eine generelle Nachfrage. Nehmen wir an, ich verwende diese Schreibweise:

[mm]\forall a \in A\ \exists b \in B\ \forall c \in C: ...[/mm]

Verstehe ich es jetzt richtig, dass a zwar beliebig ist, aber fest bleibt, wenn der zweite Quantor betrachtet wird, und analoges für a,b im dritten Quantor gilt?

Im Prinzip wird die jeweilige Variable also in den inneren Quantoren immer fixiert?

Dann wird mir auch sofort klar, warum die Reihenfolge wichtig ist.

Das ist jetzt bestimmt sehr unmathematisch ausgedrückt, aber trifft es die Sache? Würde mir vom Verständnis helfen...

Vielen Dank,
Rainer

Bezug
                        
Bezug
korrekte Quantifizierung?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Fr 19.12.2008
Autor: djmatey


> Vielen Dank, das hatte ich übersehen und die Antwort hilft
> mir stark weiter.
>  
> Vielleicht noch eine generelle Nachfrage. Nehmen wir an,
> ich verwende diese Schreibweise:
>  
> [mm]\forall a \in A\ \exists b \in B\ \forall c \in C: ...[/mm]
>  
> Verstehe ich es jetzt richtig, dass a zwar beliebig ist,
> aber fest bleibt, wenn der zweite Quantor betrachtet wird,
> und analoges für a,b im dritten Quantor gilt?

Ja, du gibst ein beliebiges a [mm] \in [/mm] A vor, hältst es fest. Dazu existiert b [mm] \in [/mm] B, so dass für alle c [mm] \in [/mm]  C (gleichzeitig) irgendwas gilt. Das b kann also zu jedem a [mm] \in [/mm] A unterschiedlich sein, muss aber nicht.

>  
> Im Prinzip wird die jeweilige Variable also in den inneren
> Quantoren immer fixiert?

Hmm, schwer zu sagen, was du damit meinst... Schätze, du meinst das Richtige - im Prinzip habe ich es oben beschrieben.

>  
> Dann wird mir auch sofort klar, warum die Reihenfolge
> wichtig ist.
>  
> Das ist jetzt bestimmt sehr unmathematisch ausgedrückt,
> aber trifft es die Sache? Würde mir vom Verständnis
> helfen...
>  
> Vielen Dank,
>  Rainer

LG djmatey

Bezug
                                
Bezug
korrekte Quantifizierung?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Fr 19.12.2008
Autor: rainman

Vielen Dank, jetzt ist es klar für mich (und meine schwammige Aussage meinte genau das von Dir gesagte). Toll, wie rasch und kompetent es hier Auskunft gibt :-)

Rainer

Bezug
                
Bezug
korrekte Quantifizierung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Fr 19.12.2008
Autor: rainman

Ich hätte jetzt doch noch einmal eine Frage, die in Zusammenhang mit der vorherigen steht. Ich hoffe es ist OK, wenn ich die hier anfüge.

Ich möchte nun Menge anhand der Quantoren bilden. Also z.B. die Menge aller unteren Schranken eines reellen Intervalls. Eine untere Schranke ist ja ein a gemäss dieser Definition (mit [mm]M \subset \IR[/mm]):

[mm]\exists a \in \IR\ \forall x \in M: a \leq x[/mm]

Aber wie beschreibe ich nun die Menge [mm]U[/mm] aller dieser unteren Schranken korrekt?

[mm]U = \{a\ |\ \forall x \in M: a \leq x\}[/mm]

Ist das richtig? Oder eher "formaler Schwachsinn?" ;-)

Für Tipps bedanke ich mich schon im Voraus!

Rainer

Bezug
                        
Bezug
korrekte Quantifizierung?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Fr 19.12.2008
Autor: Al-Chwarizmi


> Ich möchte nun Mengen anhand der Quantoren bilden.
> Also z.B. die Menge aller unteren Schranken eines
> reellen Intervalls.
> Eine untere Schranke ist ja ein a gemäss dieser Definition
> (mit [mm]M \subset \IR[/mm]):
>  
> [mm]\exists a \in \IR\ \forall x \in M: a \leq x[/mm]

Diese Zeile besagt: "Die Menge M besitzt eine untere Schranke"
  

> Aber wie beschreibe ich nun die Menge [mm]U[/mm] aller dieser
> unteren Schranken korrekt?
>  
> [mm]U = \{a\ |\ \forall x \in M: a \leq x\}[/mm]       [ok]

korrekt !


LG  al-Chw.

Bezug
                                
Bezug
korrekte Quantifizierung?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 Fr 19.12.2008
Autor: rainman

puh - danke! Dann kann ich jetzt mal mit dem weitermachen, was ich eigentlich tun wollte. Das hat mir echt gewaltig geholfen!

Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]