www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale Funktionenkurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Rationale Funktionen" - kurvendiskussion
kurvendiskussion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurvendiskussion: asymptote und fortsetzungsfkt
Status: (Frage) beantwortet Status 
Datum: 18:24 Di 27.03.2007
Autor: slice

hallo!
es ist bei einer aufgabe die fkt.
f(x) = [mm] \bruch{x^{3}+x²}{x²+3x+2} [/mm]
gegeben
die definitionslücken sind -1 und -2.
dann sollte eine stetige fortsetzungsfunktino g gefunden werden, mit der man auch weiterrechnen darf bei den folgenden aufgaben.
dazu hab ich die funktion

g: [mm] \bruch{x²}{x+2} [/mm] für D=R ohne -1 und -2
und 1 für x=-1
genommen.

meine 1. frage ist:
hääte man da auch die normale funktion vom anfang sthen lassen können, also [mm] \bruch{x^{3}+x²}{x²+3x+2} [/mm] für D=R ohne -1 und -2
und 1 für x=-1

oder geht das nicht?


so, danach sollten alle asymptoten rausgesucht werden.
jetzt habe ich zuerst
[mm] \limes_{x\rightarrow\infty} \bruch{x²}{x+2} [/mm]
berechnet.
im graphen sieht man ja, dass sich die fkt. bei + und - unendlich einer geraden annähert.
aber ich weiß noch nciht genau wie man jetzt auf diese gerade kommt bzw wieso das so ist.. ich kenne wohl die rechnung, bzw regel

[mm] \limes_{x\rightarrow\infty} [/mm] |f(x)-(mx+t)|=0
für schräge asymptoten, aber ich weiß trotzdem irgendwie nicht so richtig, wie ich von dieser formel auf die gleichung der asymptote komme...

        
Bezug
kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Di 27.03.2007
Autor: leduart

Hallo
> hallo!
>  es ist bei einer aufgabe die fkt.
>   f(x) = [mm]\bruch{x^{3}+x²}{x²+3x+2}[/mm]
>  gegeben
>  die definitionslücken sind -1 und -2.
>  dann sollte eine stetige fortsetzungsfunktino g gefunden
> werden, mit der man auch weiterrechnen darf bei den
> folgenden aufgaben.
>  dazu hab ich die funktion
>  
> g: [mm]\bruch{x²}{x+2}[/mm] für D=R ohne -1 und -2
>  und 1 für x=-1
>  genommen.

beinahe richtig, aber die ist jetzt D=R ohne -2, denn die Unstetigkeit bei 1 hast du ja beseitigt.

> meine 1. frage ist:
>  hääte man da auch die normale funktion vom anfang sthen
> lassen können, also [mm]\bruch{x^{3}+x²}{x²+3x+2}[/mm] für D=R ohne
> -1 und -2
>  und 1 für x=-1
>  
> oder geht das nicht?

Das geht, aber der Beweis, dass das bei -1 stetig ist kommt erst mit der Umformung.

>
> so, danach sollten alle asymptoten rausgesucht werden.
>  jetzt habe ich zuerst
> [mm]\limes_{x\rightarrow\infty} \bruch{x²}{x+2}[/mm]
>  berechnet.
>  im graphen sieht man ja, dass [mm]\bruch{x²}{x+2}[/mm] die schräge
> asymptote schon ist. aber woher weiß ich denn, wenn ich nur
> den bruch da stehen habe, ob ich schon weit genug aufgelöst
> habe und den bruch so als asymptote stehen lassen kann,

Nein, du solltest noch durch x "kuerzen"
also [mm] \bruch{x}{1+\bruch{2}{x}} [/mm]
dann x gegen [mm] \pm\infty [/mm]  2/x gegen 0 also f(x)gegen g(x)=x
Die Assymptote ist ne Gerade!

> oder ob ich noch große zahlen einsetzen muss, denn dann
> würde als grenzwert ja [mm]\infty[/mm] rauskommen.. hoffe die 2.
> frage versteht überhaupt wer....

die Assymptotenfkt durch einsetzen von grossen Zahlen zu finden klappt nur, wenn man ne parallele zur x-achse als Assymptote hat. sonst musst du es wie oben gezeigt machen.
(die Idee, wie man findet, was man sucht: fuer grosse x ist kaum ein Unterschied zwischen x und x+Zahl, also hat man ungefaehr [mm] x^2/x=x. [/mm] Das dividieren durch x in Z und N ist nur, damit man es schoener beweisen kann.
Gruss leduart

Bezug
                
Bezug
kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Di 27.03.2007
Autor: slice

hmm aber die nächste aufgabe ist noch, dass der graph von Gf , die y-achse, die schräge asymptote (y=x-2) und die gerade x=4 eine fläche einschließen, die man berechnen soll.. wie kommt man da denn dann auf die schiefe asymptote?

Bezug
                        
Bezug
kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Di 27.03.2007
Autor: leduart

Hallo
die Gerade y=x-2 ist garantiert kein Assymptote zu der Kurve.
aber sie ist ja parallel dazu.
Du kannst jetzt die Flaeche wie angegeben eben nicht zw. Assymptote sondern Gerade ausrechnen, oder zw. wirklicher Assymptote y=x, oder beides, beides zu machen ist fast kein zusaetzlicher Rechenaufwand!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]