www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale Funktionenkurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Rationale Funktionen" - kurvendiskussion
kurvendiskussion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurvendiskussion: "Frage"
Status: (Frage) beantwortet Status 
Datum: 20:20 Di 04.03.2008
Autor: Dagobert

hallo!

hätte ne frage zu folgendem beispiel:

[Dateianhang nicht öffentlich]

1.definitionsbereich

[mm] D={x\in\IR/x\not=5} [/mm]

2.nullstellen

f(x)=0

[mm] 0=e^x/(x-5) [/mm] --> x=5 (nullstelle)

3.extremwerte

f'(x)=0

[mm] f'(x)=(e^x/(x-5))-(e^x/(x-5)^2)=0 [/mm]

--> x=6

das hab ich dann in der zweiten ableitung eingesetzt:

[mm] f''(x)=(e^x/(x-5))-2*e^x/(x-5)^2)+(2*e^x/(x-5)^3) [/mm]

--> >0 --> minimalstelle

4.wendepunkte

ist da die zweite ableitung null oder? nur wie löse ich das dann? ist ja immer wenn x=5 ist 0 0der?

5.randbereich

[mm] \limes_{x\rightarrow\infty}e^x/(x-5) [/mm] --> [mm] \infty [/mm] oder?

nur welche bereiche muss ich da noch betrachten?

danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
kurvendiskussion: Kurvendiskussion
Status: (Antwort) fertig Status 
Datum: 20:55 Di 04.03.2008
Autor: clwoe

Hi,

der Definitionsbereich stimmt und auch die Ableitung und die Extremstelle stimmt. Auch die Minimalstelle stimmt. Die Nullstelle ist falsch. Der Zähler kann nicht 0 werden und der Nenner darf nicht 0 werden. Also gibt es keine Nullstelle.

Für die Wendepunkte gilt: zweite Ableitung muss 0 werden.
Die zweite Ableitung sieht so aus: [mm] f^{''}(x)=\bruch{e^{x}(x^{2}-12x+37)}{(x-5)^{3}} [/mm]

Hier gilt doch: Der Nenner kann nicht 0 werden, [mm] e^{x} [/mm] wird nicht 0, also muss der quadratische Term 0 werden. Das kannst du prüfen mit der Lösungsformel.

Für die Grenzwerte musst du anschauen wie dein Definitionsbereich lautet. Hier ist er [mm] \IR \setminus [/mm] {5}. Also einmal x-> [mm] +\infty, [/mm] x-> [mm] -\infty, [/mm] x -> 5 einmal von rechts kommend und x -> 5 einmal von links kommend. Hier prüfst du praktisch wie sich der Graph in der Nähe der Asymptote verhält, denn 5 ist ja ausgeschlossen.

Ich hoffe es ist dir jetzt klarer.

Gruß,
clwoe


Bezug
                
Bezug
kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Di 04.03.2008
Autor: Dagobert

hallo!

-wendepunkte:

wie kann ich [mm] x^2-12x+37 [/mm] lösen? da steht mit der lösungsformel ja dann -1 unter der wurzel?

-randbereich:

wenn ich sage:

[mm] \limes_{x\rightarrow\infty}e^x/(x-5) [/mm] --> [mm] \infty [/mm] .. [mm] +\infty [/mm] und [mm] -\infty [/mm] verhalten sich da ja gleich oder?

und

[mm] \limes_{x\rightarrow5+}e^x/(x-5) [/mm] --> [mm] +\infty [/mm]

[mm] \limes_{x\rightarrow5-}e^x/(x-5) [/mm] --> [mm] -\infty [/mm]

oder?

danke!




Bezug
                        
Bezug
kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Di 04.03.2008
Autor: zetamy

Hallo,

> -wendepunkte:
>  
> wie kann ich [mm]x^2-12x+37[/mm] lösen? da steht mit der
> lösungsformel ja dann -1 unter der wurzel?

Richtig. Folglich gibt es keinen reellen Wendepunkt.

>  
> -randbereich:
>  
> wenn ich sage:
>  
> [mm]\limes_{x\rightarrow\infty}e^x/(x-5)[/mm] --> [mm]\infty[/mm] .. [mm]+\infty[/mm]
> und [mm]-\infty[/mm] verhalten sich da ja gleich oder?

Für [mm]x\to\infty[/mm] ist das richtig, aber nicht für [mm]x\to -\infty[/mm]. Sieh dir die Exponentialfunktion für große negative nochmal an.

>  
> und
>  
> [mm]\limes_{x\rightarrow5+}e^x/(x-5)[/mm] --> [mm]+\infty[/mm]
>  
> [mm]\limes_{x\rightarrow5-}e^x/(x-5)[/mm] --> [mm]-\infty[/mm]

Diese Grenzwerte sind richtig.


Gruß, zetamy

Bezug
                                
Bezug
kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Do 06.03.2008
Autor: Dagobert

hallo!

Für [mm] x\to\infty [/mm]  ist das richtig, aber nicht für [mm] x\to -\infty [/mm]  . Sieh dir die Exponentialfunktion für große negative nochmal an.

geht dann für [mm] -\infty [/mm] der grenzwert gegen 0 oder?

danke!


Bezug
                                        
Bezug
kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Do 06.03.2008
Autor: MathePower

Hallo Dagobert,

> hallo!
>  
> Für [mm]x\to\infty[/mm]  ist das richtig, aber nicht für [mm]x\to -\infty[/mm]
> . Sieh dir die Exponentialfunktion für große negative
> nochmal an.
>  
> geht dann für [mm]-\infty[/mm] der grenzwert gegen 0 oder?

Ja. [ok]

>
> danke!
>  

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]