lebesgue-integrierbar < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:23 Mo 15.08.2005 | Autor: | terrier |
ich hab eine frage zu der definition der lebesgue integration,bzw unserer definition davon.
wir haben sie über ober- und unterintegral eingeführt.
dabei ist das oberintegral von f das infimum der menge des integrale über fkt.nen g, für die gilt:g ist aus der menge aller fkt. [mm] g:R^n->R [/mm] mit der eigenschaft:es gibt monoton steigende folge von fktnen mit kompakten träger deren supremum die fkt g ist.und es gilt g [mm] \ge [/mm] f .
nun meine frage:
versteh ich das richtig, das g als supremum einer monoton steigenden fkt.nenfolge für alle x aus dem träger g(x) [mm] \ge [/mm] f(x) erfüllt, und das die monotonie sich nur auf g bezieht,d.h. das wir eine fkt über eine andere approximieren,deren integral minimal grösser ist als das der fkt f ?
habe da am anfang einen wiederspruch gesehen, und dachte an einen druckfehler, aber so müsste es doch stimmen.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:13 Mo 15.08.2005 | Autor: | Julius |
Hallo terrier!
Zunächst einmal finde ich diesen Zugang zum Lebesgue-Integral eher ungewöhnlich (ich kenne eher die Einführung, wie sie im Bauer (Maßtheorie) steht), aber ich habe mir das jetzt mal hier (Seite 84) angeschaut.
> ich hab eine frage zu der definition der lebesgue
> integration,bzw unserer definition davon.
> wir haben sie über ober- und unterintegral eingeführt.
> dabei ist das oberintegral von f das infimum der menge des
> integrale über fkt.nen g, für die gilt:g ist aus der menge
> aller fkt. [mm]g:R^n->R[/mm] mit der eigenschaft:es gibt monoton
> steigende folge von fktnen mit kompakten träger deren
> supremum die fkt g ist.und es gilt g [mm]\ge[/mm] f .
> nun meine frage:
> versteh ich das richtig, das g als supremum einer monoton
> steigenden fkt.nenfolge für alle x aus dem träger g(x) [mm]\ge[/mm]
> f(x) erfüllt, und das die monotonie sich nur auf g
> bezieht,d.h. das wir eine fkt über eine andere
> approximieren,deren integral minimal grösser ist als das
> der fkt f ?
Ich denke du meinst es richtig. Wir haben hier zwei Grenzübergänge. Wir nehmen also eine Funktion $g: [mm] \IR^n \to \IR$ [/mm] mit $g [mm] \ge [/mm] f$, die sich als Grenzwert einer monoton steigenden Folge von Funktionen mit kompaktem Träger darstellen lässt. Von diesem $g$ können wir (erster Grenzübergang) das Lebesgue-Integral definieren (das wurde vorher im Skript, sicherlich auch in eurem, erledigt). Das machen wir nun (theoretisch) mit jedem solchen $g [mm] \ge [/mm] f$. Auf diese Art und Weise erhalten wir eine ganze Familie von Integralen (bzw. eine Familie reeller Zahlen, nämlich von den Auswertungen des Integrals). Und aus dieser Familie reeller Zahlen bilden wir das Infimum und nennen diesen Wert das Oberintegral von $f$. Dies ist dann der zweite Grenzübergang.
Die Sache mit dem "minimal größer" kann man so nicht stehenlassen. Es kann ja sein, dass $f$ sich selber darstellen lässt als Supremum einer monoton steigenden Folge von Funktionen mit kompaktem Träger, und dann können wir ja sogar $g=f$ wählen. Also solltest du vorichtig sein mit solchen Aussagen. Richtig ist, dass man das Integral von $f$ als Infimum von Integralen von Funktionen $g$ definiert, die punktweise größer oder gleich $f$ sind und die sich als Supremum einer monoton steigenden Folge von Funktionen mit kompaktem Träger darstellen lassen. Nicht mehr, aber auch nicht weniger...
Viele Grüße
Julius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:28 Mo 15.08.2005 | Autor: | terrier |
das mit der ausdrucksweise bei minimal ist richtig.ich meinte aber das gleiche wie du,das sie natürlich auch gleich sein kann.
danke für deine antwort.
|
|
|
|