www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebralexigographische Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - lexigographische Ordnung
lexigographische Ordnung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lexigographische Ordnung: Sinn
Status: (Frage) beantwortet Status 
Datum: 01:08 Mo 17.01.2005
Autor: Reaper

Irgendwie check ich denn Sinn bei der lexigographischen Ordnung nicht ganz ab. Was bringt die. Wäre schön wenn mir einer ein praktisches Beispiel geben würde und was die Definition der lex. Ordnung bedeutet:
Seien [mm] (A_{1}, \le_{1}) [/mm] und [mm] (A_{2}, \le_{2}) [/mm] geordnet. Auf A :=  [mm] A_{1} [/mm] x  [mm] A_{2} [/mm] definieren wir:

( [mm] a_{1},a_{2}) \le [/mm] ( [mm] a_{1}',a_{2}') \gdw (a_{1} [/mm]   <_{1} [mm] a_{1}' \vee [/mm] ( [mm] a_{1} [/mm] = [mm] a_{1}' \wedge a_{2} [/mm]  <_{2}  [mm] a_{2}') [/mm]




        
Bezug
lexigographische Ordnung: tip
Status: (Antwort) fertig Status 
Datum: 10:47 Mo 17.01.2005
Autor: FriedrichLaher

Hallo, Hannes,

Hast Du schon einmal ein Telephonbuch, Wörterbuch, Lexikon benutz?

Bezug
                
Bezug
lexigographische Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:26 Mo 17.01.2005
Autor: Reaper

OK deine Andeutung auf die Sortierung der Buchstaben verstehe ich. Aber wie drückt sich das Ganze auf die Formel aus?

Bezug
                        
Bezug
lexigographische Ordnung: simples Beispiel
Status: (Antwort) fertig Status 
Datum: 12:02 Mo 17.01.2005
Autor: FriedrichLaher

tja,
dann ein noch einfacheres Beispiel:

zwei 2stellige Dezimalzahlen uv, wx

uv < wx wenn ( u < w ) oder ( ( u = w ) und ( v < x ) )

Bezug
                                
Bezug
lexigographische Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:20 Mo 17.01.2005
Autor: Reaper

Ah jetzt macht es Kling in meinem Hirn.
Und die lexigraphische Ordnung ist wahrscheinlich dazu gut 2 geordnete Mengen neu zu ordnen nach dem Schema der Formel, oder?

Bezug
                                        
Bezug
lexigographische Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Mo 17.01.2005
Autor: FriedrichLaher

Tupel aus Elementen geordneter Mengen, und es beschränkt sich nicht auf 2erTupel.

Bezug
        
Bezug
lexigographische Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Mo 17.01.2005
Autor: Marc

Hallo Reaper.

ich weiß nicht, ob es jetzt klar geworden ist.

Hat man eine Menge, deren Elemente sich als Tupel darstellen läßt, dann kann man unter Umständen eine lexikographische Ordnung einführen.

Zum Beispiel kann man ja die Buchstaben des Alphabets ordnen, A<B<C<...<Z.
Wenn man nun ein Wort auffasst als ein Tupel von Buchstaben (HALLO = (H,A,L,L,O)), so kann man die Menge aller Wörter naheliegend ordnen, indem man die Buchstaben zweier Wörter an der kleinsten Position vergleicht, an der die Buchstaben unterschiedlich sind.

Beispiel:

Kirsche <-> Kirche

Die 4. Position ist der erste, an der sich die beiden Wörter unterscheiden. Wegen C<S gilt: Kirche<Kirsche.

Diese Idee läßt sich nun verallgemeinern, indem Tupel positionsweise verglichen werden.

Viele Grüße,
Marc



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]