www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastiklim inf lim sup von Ergeinisse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - lim inf lim sup von Ergeinisse
lim inf lim sup von Ergeinisse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lim inf lim sup von Ergeinisse: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:02 Di 25.10.2011
Autor: musesician

Aufgabe
1. Für eine Folge von Teilmengen [mm] $A_{n}, [/mm] n [mm] \in \IN$, [/mm] eines Grundraums [mm] $\Omega$ [/mm] definiert man
$lim [mm] inf_{n \to \infty} A_{n} [/mm] := [mm] \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}$ [/mm] und $ lim [mm] sup_{n \to \infty} A_{n} [/mm] := [mm] \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}$ [/mm]


Zeigen Sie
a) $lim [mm] inf_{n \to \infty} A_{n} [/mm] = [mm] \{\omega \in \Omega | \exists n_{0} \in \IN \forall n \ge n_{0} : \omega \in A_{n}\}.$ [/mm]
[mm] $liminf_{n \to \infty} A_{n}$ [/mm] beschreibt also das Ereignis, dass fast alle (oder schließlich alle), d.h. alle bis auf endlich viele der Ereignisse [mm] $A_{n}$$ [/mm] eintreten.

b) [mm] $limsup_{n \to \infty} A_{n} [/mm] = [mm] \{\omega \in \Omega | \omega \in A_{n}$ für unendlich viele $n \in \IN\}$ [/mm]
[mm] $limsup_{n \to \infty} A_{n}$ [/mm] beschreibt also das Ergebnis, dass unendlich viele der Ereignisse [mm] $A_{n}$ [/mm] eintreten.

c) [mm] $liminf_{n \to \infty} A_{n} \subset limsup_{n \to \infty} A_{n}$ [/mm]

d) [mm] $liminf_{n \to \infty} A^{c}_{n} [/mm] = [mm] (limsup_{n \to \infty} A_{n})^{c}$ [/mm]

e) [mm] $1_{liminf_{n \to \infty} A_{n}} [/mm] = [mm] liminf_{n \to \infty} 1_{A_{n}}$ [/mm]

f) [mm] $1_{limsup_{n \to \infty} A_{n}} limsup_{n \to \infty} 1_{A_{n}}$ [/mm]

1 mit Index beschreibt hier die Indikatorfunktion.

Ich verstehe schon die Definitionen von limsup und liminf nicht. Das sind mir einfach zu viele Hieroglyphen.


Bitte um Ansätze/Erklärungen, Lösungsvorschläge.

        
Bezug
lim inf lim sup von Ergeinisse: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Di 25.10.2011
Autor: fred97

Zu

          $ lim [mm] inf_{n \to \infty} A_{n} [/mm] := [mm] \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k} [/mm] $

Halte zunächst n [mm] \in \IN [/mm] fest und setze

       [mm] $B_n:= A_n \cap A_{n+1} \cap A_{n+1} \cap [/mm] ......$.

Ist soweit alles klar ?

Wenn ja, so vereinige all die so gewonnenen Mengen [mm] B_n: \bigcup_{n=1}^{ \infty}B_n. [/mm]


Dann ist  lim inf [mm] A_n [/mm] = [mm] \bigcup_{n=1}^{ \infty}B_n. [/mm]

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]